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The (Symmetric, Metric) TSP

• Complete undirected graph Kn

• Edge costs cij for distinct i, j ∈ [n] = {1, 2, ..., n} with
cij = cji and cij ≤ cik + ckj for all distinct i, j, k
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4

5

Goal
Find a minimum-cost Hamiltonian cycle: the cheapest cycle
visiting every city exactly once.
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The Subtour Elimination LP Relaxation (1950s)

Let δ(S) := {e = {i, j} : |{i, j} ∩ S| = 1} be the set of edges
with exactly one endpoint in S, and let δ(v) := δ({v}).

min
∑
e∈E cexe

subject to
∑
e∈δ(v) xe = 2, v = 1, . . . , n∑
e∈δ(S) xe ≥ 2, S ⊂ V : S 6= ∅, S 6= V

0 ≤ xe ≤ 1, e = 1, . . . , n.

Theorem (Wolsey 1980, Shmoys and Williamson 1990)
The integrality gap of this relaxation is at most by 3

2 . That is,
for any, for any set of metric and symmetric edge costs,

Optimal TSP Solution
Optimal LP Solution ≤

3
2 .
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.
Let A � 0 denote that A is a positive semidefinite matrix, J denote
the all-ones matrix, and e denote the all-ones vector.

min 1
2 trace (CX) = 1

2
∑n
i,j=1 CijXij

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

( 2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix.

Theorem (Cvetković, Čangalović, and Kovačević-Vujčić 1999)
This semidefinite program is a relaxation of the TSP: the adjacency
matrix of any Hamiltonian cycle is feasible and has the appropriate
objective value.
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

(
2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix.

X is a fractional adjacency matrix of Kn :

for e = {i, j}, Xij = Xji is the proportion of edge e used.
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

(
2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix.

1
2

1
2
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

(
2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix.

The weighted graph corresponding to X (as a weighted
adjacency matrix) is at least as connected as a cycle graph,

with respect to algebraic connectivity
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

(
2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix .

Theorem (Goemans and Rendl, 2000)
This SDP is weaker than the subtour elimination LP: any
feasible solution for the subtour LP is also feasible for this SDP.
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

(
2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix.

Theorem (G. and Williamson, 2017)
This SDP has an unbounded integrality gap
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A Second SDP Relaxation (2008)

Let C = (cij)ni,j=1 be the matrix of edge costs and Sn be the set
of real, symmetric n× n matrices. Also let d = bn2 c.

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

Theorem (de Klerk, Pasechnik, and Sotirov 2008)
This semidefinite program is a relaxation of the TSP.
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A Second SDP Relaxation (2008)

Let C = (cij)ni,j=1 be the matrix of edge costs and Sn be the set
of real, symmetric n× n matrices. Also let d = bn2 c.

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

Theorem (de Klerk, Pasechnik, and Sotirov 2008)
This semidefinite program is a relaxation of the TSP. Moreover,
it is incomparable with the subtour elimination LP and
dominates the SDP of Cvetković et. al.
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A Second SDP Relaxation (2008)

Idea
Let C be a Hamiltonian cycle. For i = 1, ..., d = bn2 c, let X

(i) be
the ith distance matrix of C:

X
(i)
jk =

{
1, j and k are distance i apart in C
0, otherwise.

3
4

5

6
1

2
X(1) =



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


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A Second SDP Relaxation (2008)

Idea
Let C be a Hamiltonian cycle. For i = 1, ..., d = bn2 c, let X

(i) be
the ith distance matrix of C:

X
(i)
jk =

{
1, j and k are distance i apart in C
0, otherwise.

3
4

5

6
1

2
X(2) =



0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0


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A Second SDP Relaxation (2008)

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

For i = 1, ..., d = bn2 c, these quickly follow from

X
(i)
jk =

{
1, j and k are distance i apart in C
0, otherwise.
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A Second SDP Relaxation (2008)

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

• The distance matrices of a
cycle form an association
scheme.

• This is an application of a
more general statement
about association schemes.

(See de Klerk, Filho, Pasechnik
2012)

• The distance matrices of a
cycle are circulant matrices.

• Linear combinations of
circulant matrices are
circulant.

• Circulant matrices have
well-understood eigenvalues.

(see G. and Willamson 17)
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A Second SDP Relaxation (2008)

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.



m0 m1 m2 · · · mn−1
mn−1 m0 m1 · · · mn−2

mn−2 mn−1 m0
. . . mn−3

...
...

...
. . .

...
m1 m2 m3 · · · m0



• The distance matrices of a
cycle are circulant matrices.

• Linear combinations of
circulant matrices are
circulant.

• Circulant matrices have
well-understood eigenvalues.

(see G. and Willamson 17)
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A Second SDP Relaxation (2008)
Goal
For X(j)

st = 1{s and t are distance j apart in C},

I +
d∑
j=1

cos
(2πjk

n

)
X(j) � 0, k = 1, . . . , d.



m0 m1 m2 · · · mn−1
mn−1 m0 m1 · · · mn−2

mn−2 mn−1 m0
. . . mn−3

...
...

...
. . .

...
m1 m2 m3 · · · m0



λt(M) =
n−1∑
s=0

mse
− 2πst

√
−1

n , t = 1, ..., n− 1, λn(M) =
n−1∑
s=0

ms.
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A Second SDP Relaxation (2008)
Goal
For X(j)

st = 1{s and t are distance j apart in C},

I +
d∑
j=1

cos
(2πjk

n

)
X(j) � 0, k = 1, . . . , d.



1 cos(2πk/n) cos(2π2k/n) · · · cos(2π2k/n) cos(2πk/n)
cos(2πk/n) 1 cos(2πk/n) · · · cos(2π3k/n) cos(2π2k/n)

cos(2π2k/n) cos(2πk/n) 1
. . . cos(2π4k/n) cos(2π3k/n)

...
...

...
. . .

...
...

cos(2πk/n) cos(2π2k/n) cos(2π3k/n) · · · cos(2πk/n) 1



λt(M) =
n−1∑
s=0

mse
− 2πst

√
−1

n , t = 1, ..., n− 1, λn(M) =
n−1∑
s=0

ms.
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A Second SDP Relaxation (2008)
Goal
For X(j)

st = 1{s and t are distance j apart in C},

I +
d∑
j=1

cos
(2πjk

n

)
X(j) � 0, k = 1, . . . , d.

For t ≤ n,

λt(M) =
n−1∑
s=0

mse
− 2πst

√
−1

n

= 1 + cos
(2πkd

n

)
e−

2πdt
√

−1
n +

d−1∑
s=1

cos
(2πsk

n

)(
e−

2πst
√

−1
n + e−

2π(n−s)t
√

−1
n

)
= · · ·

=


2d, if k = t = d

d, if k 6= d, t ∈ {k, n− k}
0, else.
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A Second SDP Relaxation (2008)
Let C = (cij)ni,j=1 be the matrix of edge costs and Sn be the set
of real, symmetric n× n matrices. Also let d = bn2 c.

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

Theorem (G. and Williamson, 2017)
This SDP has an unbounded integrality gap. That is, there exists no
constant α > 0 such that

OPTTSP(C)
OPTSDP(C) ≤ α

for all cost matrices C with metric, symmetric edge costs.
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Our Main Theorem: Proof Sketch
Let n be even and consider the cost matrix

Ĉ :=



0 · · · 0 1 · · · 1
... . . . ...

... . . . ...
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0
... . . . ...

... . . . ...
1 · · · 1 0 · · · 0


=
(

0 1
1 0

)
⊗ Jd.

1

2

3

4

5

6

ce = 1

ce = 0
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Our Main Theorem: Proof Sketch
Let n be even and consider the cost matrix

Ĉ :=



0 · · · 0 1 · · · 1
... . . . ...

... . . . ...
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0
... . . . ...

... . . . ...
1 · · · 1 0 · · · 0


=
(

0 1
1 0

)
⊗ Jd.

Ĉ corresponds to:
• a cut semimetric: costs where, for some S ⊂ V , cij = 1 if
{i, j} ∈ δ(S) and cij = 0 otherwise.

• an instance of Euclidean TSP: vertices 1, ..., n2 are at 0 ∈ R1

and vertices n
2 + 1, ..., n are at 1 ∈ R1. Costs are given by

the Euclidean distance between corresponding vertices.
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Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Corollary
There exists no constant α > 0 such that

OPTTSP(C)
OPTSDP(C) ≤ α

for all cost matrices C with metric, symmetric edge costs.
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Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Strategy:
1. Look within a class of feasible solutions that respect the

symmetry of Ĉ.
2. Exploit the structure of such solutions by reducing the

SDP to an LP for solutions in that class.
3. Find a feasible solution to the LP achieving the desired

cost.
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Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Candidate solutions:

X(j) =
((

aj bj
bj aj

)
⊗ Jd

)
−ajIn, bj =


4
n −

(
1− 2

n

)
aj , j ≤ d− 1

2
n −

(
1− 2

n

)
aj , j = d.

1

2

3

4

5

6

X
(j)
e = bj

X
(j)
e = aj
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Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

1

2

3

4

5

6

X
(j)
e = bj , cost 1

X
(j)
e = aj , cost 0

TSP Solutions

OPTTSP(Ĉ) = 2

SDP Solutions

OPTSDP(Ĉ) = 1
2trace

(
CX(1)

)
= 0× 2

(
n/2
2

)
a1 + 1×

(n
2

)2
b1
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Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Let

X(j) =
((

aj bj
bj aj

)
⊗ Jd

)
−ajIn, bj =


4
n −

(
1− 2

n

)
aj , j ≤ d− 1

2
n −

(
1− 2

n

)
aj , j = d.

The SDP constraint I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0 becomes

((
a(k) b(k)

b(k) a(k)

)
⊗ Jd

)
+ (1− a(k))In � 0,

where a(k) and b(k) are linear combinations of a1, ..., ad. The eigen-
values of this matrix are linear combinations of a1, ..., ad.



Semidefinite Programming Relaxations of the TSP Sam Gutekunst

Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Intermediate step: finding a minimum-cost feasible solution of
this form is equivalent to solving the following linear program:

max a1

subject to
∑d
i=1 cos

(
2πik
n

)
ai ≥ − 2

n−2 , k = 1, ..., d∑d
i=1 cos

(
2πik
n

)
ai ≤ 1, k = 1, ..., d∑d

i=1 ai = 1
ai ≤ 4

n−2 , i = 1, ..., d− 1
ad ≤ 2

n−2
ai ≥ 0, i = 1, ..., d.
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Our Main Theorem: Proof Sketch
Theorem (G. and Williamson, 2017)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

The punch-line: We find solutions where

1

2

3

4

5

6
b1 = 1−cos(πd )

n ∼ 1
n3

a1 = 2 cos(πd )+2
n−2

OPTSDP(Ĉ) ≤ n2

4 b1 ∼
1
n
.
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Corollaries of Our Theorem

Theorem (G. and Williamson, 2017)
The SDP has an unbounded integrality gap.

Corollary
The SDP is non-monotonic, unlike the TSP and subtour
elimination LP.

We’ve found SDP solutions costing n2

4 b1 ≈ 1
n , which become

arbitrarily small with n

1

2

3

4

5

6
b1 = 1−cos(πd )

n ∼ 1
n3

a1 = 2 cos(πd )+2
n−2
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Corollaries of Our Theorem

Theorem (G. and Williamson, 2017)
The SDP has an unbounded integrality gap.

Corollary
The earlier SDP of Cvetković, Čangalović, and Kovačević-Vujčić
has an unbounded integrality gap: the same X(1) we found is
feasible (and has exactly the same algebraic connectivity as a
cycle).
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Corollaries of Our Theorem

Theorem (G. and Williamson, 2017)
The SDP has an unbounded integrality gap.

Corollary
A related SDP from de Klerk, de Oliveira Filho, and Pasechnik
20012 for the k−cycle cover problem also has an unbounded
integrality gap.

1

2

3

4

5

6
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Open Questions

1. How does this SDP perform on special cases of the TSP?

• We’ve shown that the integrality gap is unbounded on the
general metric and symmetric TSP, as well as on Euclidean
TSP.

• On graphic TSP (where edge costs correspond to shortest
paths in a connected input graph), the integrality gap is at
most 2. Is it strictly better?
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Open Questions

1. How does this SDP perform on special cases of the TSP?
2. If you combine both this SDP and the subtour LP, can you

guarentee an integrality gap of 1.5− ε for any ε > 0?
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Open Questions

1. How does this SDP perform on special cases of the TSP?
2. If you combine both this SDP and the subtour LP, can you

guarentee an integrality gap of 1.5− ε for any ε > 0?
3. De Klerk and Sotirov introduced a stronger SDP in 2012.

Does this SDP have a bounded integrality gap?
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Thanks!
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