Representing topological full groups in Steinberg algebras and C*-algebras

(Joint work with L.O. Clark, M. Ghandehari, E.J. Kang, and D. Yang)

BIRS Workshop: "Cartan subalgebras in operator algebras, and topological full groups"

Friday, 8th November 2024

Becky Armstrong

Travel funded by the New Zealand Mathematical Society

Ample groupoids and inverse semigroups

A topological groupoid is **ample** if it has a basis of compact open bisections ("cobs").

An **inverse semigroup** is a semigroup S such that every element $s \in S$ has a unique **inverse** $s^* \in S$ satisfying $ss^*s = s$ and $s^*ss^* = s^*$.

Setup: Let G be an ample Hausdorff groupoid with compact unit space $G^{(0)} = r(G) = s(G)$.

The cobs in G form an inverse semigroup S(G) with identity $G^{(0)}$ under the operations

$$B_1B_2 = \big\{\gamma_1\gamma_2 \,:\, \gamma_1 \in B_1,\, \gamma_2 \in B_2,\, s(\gamma_1) = r(\gamma_2)\big\} \quad \text{ and } \quad B^* = \big\{\gamma^{-1}: \gamma \in B\big\}.$$

Topological full groups

We call a cob B full if $r(B) = s(B) = G^{(0)}$. The topological full group of G is the group $F(G) := \{B \in S(G) : B \text{ is full}\} \subseteq S(G) \setminus \{\varnothing\}.$

We have $F(G) = S(G) \setminus \{\emptyset\}$ if and only if G is a group. In this case, $F(G) = \{\{\gamma\} : \gamma \in G\} \cong G$.

Example

If G_2 is the Cuntz groupoid (i.e. the boundary-path groupoid of E_2), then $F(G_2)$ is Thompson's group V_2 , and $C^*(G_2) \cong C^*_r(G_2) \cong \mathcal{O}_2$.

Theorem (Matui 2015)

Let G and H be minimal, effective, ample Hausdorff groupoids such that $G^{(0)}$ and $H^{(0)}$ are *Cantor sets. Then* $G \cong H \iff F(G) \cong F(H)$.

Steinberg algebras

The (complex) Steinberg algebra of G is the *-algebra

 $A(G) \coloneqq \mathsf{span} \{ 1_B : B \in S(G) \} = \{ f \in C_c(G) : f \text{ is locally constant} \},\$

with multiplication satisfying $1_{B_1} * 1_{B_2} = 1_{B_1B_2}$ and involution satisfying $1_B^* = 1_{B^*}$.

This *-algebra is dense in both $C_r^*(G)$ and $C^*(G)$.

Extending the operations on S(G) gives a *-algebra of point-mass functions

 $\mathbb{C}S(G) \coloneqq \mathsf{span}\big\{\delta_B : B \in S(G)\big\}$

with *-subalgebra $\mathbb{C}F(G) = \text{span}\{\delta_B : B \in F(G)\}.$

What is the relationship between A(G), $\mathbb{C}S(G)$, and $\mathbb{C}F(G)$?

Becky Armstrong (VUW, NZ)

Representing topological full groups in Steinberg algebras

There is a representation $\widetilde{\pi}$: $\mathbb{C}S(G) \to A(G)$ satisfying $\widetilde{\pi}(\delta_B) = 1_B$ for each $B \in S(G)$.

The representation is **surjective** because $A(G) = \text{span}\{\widetilde{\pi}(\delta_B) : B \in S(G)\}$.

The representation is typically **not injective**: if $B \in S(G)$ satisfies $B = B_1 \sqcup B_2$ for nonempty $B_1, B_2 \in S(G)$, then $1_{B_1} + 1_{B_2} = 1_B$, but $\delta_{B_1} + \delta_{B_2} \neq \delta_B$.

Since $F(G) \subseteq S(G)$, we have $\mathbb{C}F(G) \subseteq \mathbb{C}S(G)$, so $\tilde{\pi}$ restricts to a representation $\pi: \mathbb{C}F(G) \to A(G)$ with image im $(\pi) = \text{span}\{1_B : B \in F(G)\}$.

Questions: When is π injective? When is im(π) all of A(G)?

Injectivity and surjectivity of the representation $\pi \colon \mathbb{C}F(G) \to A(G)$

Theorem (A–Clark–Ghandehari–Kang–Yang 2024)

(a) $\pi: \mathbb{CF}(G) \to A(G)$ is *surjective* if and only if G is a group.

(b) π : $\mathbb{C}F(G) \to A(G)$ is **injective** if and only if either

(i) $G = Iso(G) \coloneqq \{\gamma \in G : r(\gamma) = s(\gamma)\}$ and G has at most one nontrivial isotropy group (i.e. $G = group \sqcup$ other units); or

(ii) $G \neq Iso(G)$ and $|G \setminus G^{(0)}| < 3$ (i.e. $G = \{\gamma, \gamma^{-1}\} \sqcup$ units, where $r(\gamma) \neq s(\gamma)$).

Why is π not injective when (i) and (ii) don't hold?

Idea: There are several cases to consider. For example, suppose $B = B_1 \sqcup B_2 \in F(G)$ for nonempty cobs $B_1, B_2 \subseteq G \setminus G^{(0)}$ with $r(B_i) = s(B_i)$. Then $D_1 \coloneqq B_1 \sqcup r(B_2) \in F(G)$ and $D_2 \coloneqq r(B_1) \sqcup B_2 \in F(G)$, and $1_{D_1} + 1_{D_2} = 1_B + 1_{G^{(0)}}$, but $\delta_{D_1} + \delta_{D_2} \neq \delta_B + \delta_{G^{(0)}}$.

Density of the image of the representation π : $\mathbb{C}F(G) \rightarrow A(G)$

Recall that A(G) is dense in $C^*(G)$ and $C^*_r(G)$. And when G is not a group, $im(\pi) \neq A(G)$.

Question: When G is not a group, could $im(\pi)$ still be dense in $C^*(G)$ or $C^*_r(G)$?

Recall that for the Cuntz groupoid G_2 , we have $F(G_2) = V_2$, and $C^*(G_2) \cong C^*_r(G_2) \cong \mathcal{O}_2$, and $A(G_2)$ is the Leavitt path algebra L_2 .

Theorem (Haagerup–Olesen 2017)

 $\pi(\mathbb{C}V_2)$ is dense in \mathbb{O}_2 (even though $\pi: \mathbb{C}V_2 \to A(G_2)$ is not surjective).

We consider this question further in the setting where G is a **discrete** groupoid with finitely many units.

Becky Armstrong (VUW, NZ)

Density of the image of π in $C^*(G)$ for a discrete groupoid G

Theorem (A-Clark-Ghandehari-Kang-Yang 2024)

Let G be a discrete groupoid with finitely many units. Then $im(\pi)$ is dense in $C^*(G)$ if and only if G is a group.

Proof strategy.

- Let $n \coloneqq |G^{(0)}|$. If n = 1, then G is a group and $im(\pi) = A(G)$ is dense in $C^*(G)$.
- Suppose n > 1. For each $\gamma \in G$, let $T(1_{\{\gamma\}}) \in M_n(\mathbb{C})$ be the $(r(\gamma), s(\gamma))$ matrix unit.
- Since each $f \in A(G)$ can be written as $f = \sum_{\gamma \in supp(f)} f(\gamma) \mathbb{1}_{\{\gamma\}}$, we can extend T linearly to get a representation T: $A(G) \to M_n(\mathbb{C})$ that is full-norm-bounded.
- Show that for each $f \in im(\pi)$, the matrix T(f) has constant row and column sums.

Since n > 1, it follows that $1_{\{\gamma\}} \notin \overline{\operatorname{im}(\pi)}^{\|\cdot\|_{\max}}$ for all $\gamma \in G$, so $\overline{\operatorname{im}(\pi)}^{\|\cdot\|_{\max}} \neq C^*(G)$.

Density of the image of π in $C_r^*(G)$ for a discrete groupoid G

The previous theorem does not hold in the reduced setting! To see this, we construct a discrete groupoid G with $2 \leq |G^{(0)}| < \infty$ for which $im(\pi)$ is dense in $C_r^*(G)$.

Example (A–Clark–Ghandehari–Kang–Yang 2024)

- Let $G = \mathbb{F}_2 \sqcup \mathbb{F}_2 = \{(g, i) : g \in \mathbb{F}_2, i \in \{1, 2\}\}$. Then $F(G) \cong \mathbb{F}_2 \times \mathbb{F}_2$.
- By symmetry, it suffices to show that $1_{\{(g,1)\}} \in \overline{\operatorname{im}(\pi)}^{\|\cdot\|_r}$ for all $g \in \mathbb{F}_2$.
- Order $\mathbb{F}_2 = \{t_1, t_2, t_3, \dots\}$ by word length. Define $(\phi_n)_{n=1}^{\infty} \subseteq im(\pi)$ by

$$\phi_n \coloneqq \pi\left(\frac{1}{n}\sum_{i=1}^n \delta_{\{(g,1),(t_i,2)\}}\right) = \frac{1}{n}\sum_{i=1}^n \mathbf{1}_{\{(g,1),(t_i,2)\}} = \mathbf{1}_{\{(g,1)\}} + \frac{1}{n}\sum_{i=1}^n \mathbf{1}_{\{(t_i,2)\}}.$$

• [Haagerup 1978] provides a bound on norms of elements of $C_r^*(\mathbb{F}_2)$, which we use to show that $\frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{(t_i,2)\}} \to 0$ as $n \to \infty$, so $\phi_n \to \mathbb{1}_{\{(g,1)\}}$ in $C_r^*(G)$.

References

- [1] B. Armstrong, L.O. Clark, M. Ghandehari, E.J. Kang, and D. Yang, *Representing topological full groups in Steinberg algebras and C*-algebras*, J. Math. Anal. Appl. **534** (2024), 1–13.
- [2] K.A. Brix and E. Scarparo, C*-simplicity and representations of topological full groups of groupoids, J. Funct. Anal. 277 (2019), 2981–2996.
- [3] L.O. Clark, C. Farthing, A. Sims, and M. Tomforde, *A groupoid generalisation of Leavitt path algebras*, Semigroup Forum **89** (2014), 501–517.
- [4] U. Haagerup, *An example of a nonnuclear C*-algebra, which has the metric approximation property*, Invent. Math. **50** (1978), 279–293.
- [5] U. Haagerup and K.K. Olesen, *Non-inner amenability of the Thompson groups* T *and* V, J. Funct. Anal. **272** (2017), 4838–4852.
- [6] H. Matui, *Topological full groups of one-sided shifts of finite type*, J. Reine Angew. Math. **705** (2015), 35–84.
- [7] B. Steinberg, *A groupoid approach to discrete inverse semigroup algebras*, Adv. Math. **223** (2010), 689–727.