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Further: if there is more to the isotropy than this, then we do not
get the correspondence.
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J: CH(X; G) — Go(X; G) (Renault).
Given Go(G(©®) C C C C/(X; G), then

H={y € G: j(c)(y) #0 for some c € C}.

A C*-algebra A ~ C}(X; G) is nuclear if and only if G is amenable
(Takeishi (2014)).

Theorem (Brown-Exel-F-Pitts-Reznikoff (2021, 2024))

Let ¥ — G be a twist with G amenable. Take any a € C}(X; G)
and let

U =supp(a) = {v € G: j(a)(y) # 0}
Then a € Co(Z]g: U)'"
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In this case, the amenability condition (of I or the action ' ~ X)),
can be replaced with the condition that ' has the approximation
property.



Recovering elements from their Fourier representation...?

What conditions can we put on G, or ¥ — G, to guarantee that
we can recover elements from their supports?
le. ifa€ C}(X; G) and U = supp(a) can | tell if

ae (=i 0) "7




Rapid Decay for Groupoids

Definition

Let G be a groupoid. A function L: G — [0,00) is a length
function if

@ L(x)=0 forall x € GO,
@ L(v 1) =L(y) forall y € G;
© L(yn) < L(v) + L(n), when r(n) = s(v).

A\

Definition (Hou (2017), Weygandt (2023))

Let G be an étale groupoid with length function L. For each
integer p > 0 define a norm on C.(X; G) by

1fll2p = sup (D IFPE+L())*
xeGO 'Y) X

> PR+ Lm))*P)Y?

r(y)=x




Rapid Decay for Groupoids

The twist ¥ — G has rapid decay if there is a constant C > 0,
p > 0 such that
11l < Clifll2,p,L

for all f € C.(X; G). (Weygandt: rapid decay depends only on L
and G, not ¥).
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Kwasnewski-Li-Skalski (2022) introduced the Haagerup property
for (Fell-bundles over) groupoids. If a groupoid has a locally
negative type function then it will satisfy the Haagerup condition.
If the groupoid is ample and satisfies the Haagerup property, then
it will have a locally proper negative type function.
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This result is known for groups and group actions (Bedos-Conti
(2013)).



Groups satisfying the conditions

Lots of groups satisfy the above conditions (Brodzki-Niblo survey)
e.g.

@ Groups acting on CAT(0) cube complexes have negative
definite length function (Niblo-Reeves (2003)) and can have
rapid decay with certain conditions (Chatterji-Ruane (2005)).
Examples include

o Fy
@ finitely generated coxeter groups;
© some small cancellation groups (Wise).



