Recovering elements of groupoid C*-algebras from their supports

Adam H. Fuller (Ohio University) joint work with Pradyut Karmakar

BIRS, Nov. 2024

If $D \subseteq A$ is a Cartan subalgebra, then there is a groupoid twist $\Sigma \rightarrow G$ where G is an essential, Hausdorff étale groupoid such that

$$A\simeq C_r^*(\Sigma;G),\ D\simeq C_0(G^{(0)}).$$

If $D \subseteq A$ is a Cartan subalgebra, then there is a groupoid twist $\Sigma \to G$ where G is an essential, Hausdorff étale groupoid such that

$$A\simeq C_r^*(\Sigma;G),\ D\simeq C_0(G^{(0)}).$$

Theorem (Brown-Exel-F-Pitts-Reznikoff (2021))

Let A be a nuclear C^* -algebra and let $D \subseteq A$ be a C^* -diagonal. Then, if C is a C^* -algebra with $D \subseteq C \subseteq A$, then D is a C^* -diagonal of C.

If $D \subseteq A$ is a Cartan subalgebra, then there is a groupoid twist $\Sigma \to G$ where G is an essential, Hausdorff étale groupoid such that

$$A\simeq C_r^*(\Sigma;G),\ D\simeq C_0(G^{(0)}).$$

Theorem (Brown-Exel-F-Pitts-Reznikoff (2021))

Let A be a nuclear C^{*}-algebra and let $D \subseteq A$ be a C^{*}-diagonal. Then, if C is a C^{*}-algebra with $D \subseteq C \subseteq A$, then D is a C^{*}-diagonal of C. If $\Sigma \to G$ is a the twist associated to $D \subseteq A$, then there is a one-to-one correspondence

$$[H \subseteq G : H \text{ a wide open subgroupoid}\}$$

 \longleftrightarrow
 $\{C \text{ a } C^*\text{-algebra} : D \subseteq C \subseteq A\}$

If $D \subseteq A$ is a Cartan subalgebra, then there is a groupoid twist $\Sigma \to G$ where G is an essential, Hausdorff étale groupoid such that

$$A\simeq C_r^*(\Sigma;G),\ D\simeq C_0(G^{(0)}).$$

Theorem (Brown-Exel-F-Pitts-Reznikoff (2021))

Let A be a nuclear C^{*}-algebra and let $D \subseteq A$ be a C^{*}-diagonal. Then, if C is a C^{*}-algebra with $D \subseteq C \subseteq A$, then D is a C^{*}-diagonal of C. If $\Sigma \to G$ is a the twist associated to $D \subseteq A$, then there is a one-to-one correspondence

$$\{H \subseteq G : H \text{ a wide open subgroupoid}\}$$
$$\longleftrightarrow$$
$$\{C \text{ a } C^*\text{-algebra} : D \subseteq C \subseteq A\}$$

Removing the C*-diagonal condition?

A Cartan inclusion $D \subseteq A$ is a C*-diagonal if and only if the groupoid G is principal. The the condition that G is principal can be loosened a smidgen.

Removing the C*-diagonal condition?

A Cartan inclusion $D \subseteq A$ is a C*-diagonal if and only if the groupoid G is principal. The the condition that G is principal can be loosened a smidgen.

Theorem (Brown-Clark-F)

Let G be an amenable, étale groupoid with the property that: if $x, y \in G^{(0)}$ such that |xGy| > 1, then x = y, xG = Gy, and |xGx| = 2. Then if $\Sigma \to G$ is a twist, there is a one-to-one correspondence

$$\{H \subseteq G : H \text{ a wide open subgroupoid}\}$$

$$\longleftrightarrow$$

$$\{C \text{ a } C^*\text{-algebra} \colon C_0(G^{(0)}) \subseteq C \subseteq C_r^*(\Sigma; G)\}$$

A Cartan inclusion $D \subseteq A$ is a C*-diagonal if and only if the groupoid G is principal. The the condition that G is principal can be loosened a smidgen.

Theorem (Brown-Clark-F)

Let G be an amenable, étale groupoid with the property that: if $x, y \in G^{(0)}$ such that |xGy| > 1, then x = y, xG = Gy, and |xGx| = 2. Then if $\Sigma \to G$ is a twist, there is a one-to-one correspondence

$$\{H \subseteq G : H \text{ a wide open subgroupoid}\}$$

$$\longleftrightarrow$$

$$\{C \text{ a } C^*\text{-algebra} : C_0(G^{(0)}) \subseteq C \subseteq C_r^*(\Sigma; G)\}$$

Further: if there is more to the isotropy than this, then we do not get the correspondence.

There exists an injective, norm-decreasing map $j: C_r^*(\Sigma; G) \to C_0(\Sigma; G)$ (Renault). Given $C_0(G^{(0)}) \subseteq C \subseteq C_r^*(\Sigma; G)$, then

 $H = \{ \gamma \in G : j(c)(\gamma) \neq 0 \text{ for some } c \in C \}.$

There exists an injective, norm-decreasing map $j: C_r^*(\Sigma; G) \to C_0(\Sigma; G)$ (Renault). Given $C_0(G^{(0)}) \subseteq C \subseteq C_r^*(\Sigma; G)$, then

$$H = \{ \gamma \in G : j(c)(\gamma) \neq 0 \text{ for some } c \in C \}.$$

A C^* -algebra $A \simeq C^*_r(\Sigma; G)$ is nuclear if and only if G is amenable (Takeishi (2014)).

Theorem (Brown-Exel-F-Pitts-Reznikoff (2021, 2024))

Let $\Sigma \to G$ be a twist with G amenable. Take any $a \in C^*_r(\Sigma; G)$ and let

$$U = \operatorname{supp}(a) = \{ \gamma \in G : j(a)(\gamma) \neq 0 \}.$$

Then $a \in \overline{C_c(\Sigma|_U; U)}^{\|\cdot\|_r}$.

If $\Gamma \curvearrowright X$, Γ discrete and $a \in C(X) \rtimes_r \Gamma$. Let $a \sim \sum_{\gamma \in \Gamma} a_{\gamma} \cdot \gamma$, be the Fourier series. Then

$$\operatorname{supp}(a) = \bigcup_{\gamma \in \gamma} [\operatorname{supp}(a_{\gamma}) \times \{\gamma\}] \subseteq \Gamma \times X.$$

If $\Gamma \curvearrowright X$, Γ discrete and $a \in C(X) \rtimes_r \Gamma$. Let $a \sim \sum_{\gamma \in \Gamma} a_{\gamma} \cdot \gamma$, be the Fourier series. Then

$$\operatorname{supp}(a) = \bigcup_{\gamma \in \gamma} [\operatorname{supp}(a_{\gamma}) \times \{\gamma\}] \subseteq \Gamma \times X.$$

In this case, the amenability condition (of Γ or the action $\Gamma \frown X$), can be replaced with the condition that Γ has the approximation property.

Question

What conditions can we put on G, or $\Sigma \to G$, to guarantee that we can recover elements from their supports? I.e. if $a \in C_r^*(\Sigma; G)$ and $U = \operatorname{supp}(a)$ can I tell if $a \in \overline{C_c(\Sigma|_U; U)}^{\|\cdot\|}$?

Rapid Decay for Groupoids

Definition

Let G be a groupoid. A function L: $G \to [0,\infty)$ is a length function if

1
$$L(x) = 0$$
 for all $x \in G^{(0)}$;

2
$$L(\gamma^{-1}) = L(\gamma)$$
 for all $\gamma \in G$;

3
$$L(\gamma\eta) \leq L(\gamma) + L(\eta)$$
, when $r(\eta) = s(\gamma)$.

Definition (Hou (2017), Weygandt (2023))

Let G be an étale groupoid with length function L. For each integer $p \ge 0$ define a norm on $C_c(\Sigma; G)$ by

$$\|f\|_{2,p,L} = \sup_{x \in G^{(0)}} (\sum_{s(\gamma)=x} |f(\gamma)|^2 (1 + L(\gamma))^{2p},$$
$$\sum_{r(\gamma)=x} |f(\gamma)|^2 (1 + L(\gamma))^{2p})^{1/2}$$

The twist $\Sigma \to G$ has rapid decay if there is a constant $C \ge 0$, $p \ge 0$ such that

$$||f||_{r} \leq C ||f||_{2,p,L},$$

for all $f \in C_c(\Sigma; G)$. (Weygandt: rapid decay depends only on L and G, not Σ).

Haagerup Property

Definition

A function $\varphi\colon\operatorname{G}\to\mathbb{R}$ is a locally proper negative type function if

4 the function (φ, r, s) : $G \to \mathbb{R} \times G^{(0)} \times G^{(0)}$ is proper.

Haagerup Property

Definition

A function $\varphi \colon \mathcal{G} \to \mathbb{R}$ is a locally proper negative type function if

(1)
$$\varphi(x) = 0$$
 for all $x \in G^{(0)}$;
(2) $\varphi(\gamma) = \varphi(\gamma^{-1})$ for all $\gamma \in G$;
(3) for each $x \in G^{(0)}$ and $\gamma_1, \dots, \gamma_n$ with $s(\gamma_i) = x$, and $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ with $\sum \lambda_i = 0$ we have
 $\sum_{i,j} \lambda_i \varphi(\gamma_i \gamma_j^{-1}) \lambda_j \leq 0$;

4 the function (φ, r, s) : $G \to \mathbb{R} \times G^{(0)} \times G^{(0)}$ is proper.

Kwasnewski-Li-Skalski (2022) introduced the Haagerup property for (Fell-bundles over) groupoids. If a groupoid has a locally negative type function then it will satisfy the Haagerup condition. If the groupoid is ample and satisfies the Haagerup property, then it will have a locally proper negative type function.

Lemma

If φ is a locally proper negative type function on G then the function $L = \sqrt{\varphi}$ is a length function on G.

Theorem (F-Karmakar)

Let $\Sigma \to G$ be a twist. Suppose G has a locally proper negative type function φ and that G has rapid decay with respect to $L = \sqrt{\varphi}$. If $a \in C_r^*(\Sigma; G)$ and $U = \operatorname{supp}(a)$, then

$$a \in \overline{C_c(\Sigma|_U; U)}^{\|\cdot\|}$$

Lemma

If φ is a locally proper negative type function on G then the function $L = \sqrt{\varphi}$ is a length function on G.

Theorem (F-Karmakar)

Let $\Sigma \to G$ be a twist. Suppose G has a locally proper negative type function φ and that G has rapid decay with respect to $L = \sqrt{\varphi}$. If $a \in C_r^*(\Sigma; G)$ and $U = \operatorname{supp}(a)$, then

$$a\in\overline{C_c(\Sigma|_U;U)}^{\|\cdot\|}.$$

This result is known for groups and group actions (Bedos-Conti (2013)).

Lots of groups satisfy the above conditions (Brodzki-Niblo survey) e.g.

- Groups acting on CAT(0) cube complexes have negative definite length function (Niblo-Reeves (2003)) and can have rapid decay with certain conditions (Chatterji-Ruane (2005)). Examples include

 - finitely generated coxeter groups;
 - some small cancellation groups (Wise).