Non-discrete topological full groups

Alejandra Garrido (joint with Colin Reid)

Cartan subalgebras in operator algebras and topological full groups BIRS Banff, 5th November 2024

Universidad Complutense de Madrid & ICMAT Madrid

For reasons that I don't have time to explain, we want examples of simple groups that are totally disconnected and locally compact (tdlc), not discrete and generated by a compact subset.

Examples

- PSL_n(\mathbb{Q}_p), $n \geq 2$, p prime
- $Aut^{+}(T)$ =orientation-preserving automorphisms of an infinite tree T (\neq line)

Full groups of Cantor space actions give examples of simple groups but these are countable....

AAut(T) = $\{g \in$ Homeo(X) for which there is a finite clopen partition of $X = \bigsqcup_{i=1}^n U_i$ and $g_1, \ldots, g_n \in \text{Aut}(\mathcal{T})$ such that $g \restriction_{U_i} = g_i \restriction_{U_i}, i = 1, \ldots, n.$

AAut(T) = $\{g \in$ Homeo(X) for which there is a finite clopen partition of $X = \bigsqcup_{i=1}^n U_i$ and $g_1, \ldots, g_n \in \text{Aut}(\mathcal{T})$ such that $g \restriction_{U_i} = g_i \restriction_{U_i}, i = 1, \ldots, n.$

Defined in [Neretin, 1984], simplicity in [Kapoudjian, 1994]

AAut(T) = ${g \in$ Homeo(X) for which there is a finite clopen partition of $X = \bigsqcup_{i=1}^n U_i$ and $g_1, \ldots, g_n \in \text{Aut}(\mathcal{T})$ such that $g \restriction_{U_i}=g_i \restriction_{U_i},\ i=1,\ldots,n.\}=F(\mathsf{Aut}(\mathcal{T}))$, piecewise full group of Aut (T)

Defined in [Neretin, 1984], simplicity in [Kapoudjian, 1994] 3

AAut(T) \leq Homeo(X), which has a natural group topology: basic opens are

 ${h \in \text{Homeo}(X) : h(C) \subseteq D}$

for $C, D \in \mathcal{CO}(X)$ =compact-open subsets of X

AAut(T) \leq Homeo(X), which has a natural group topology: basic opens are

 ${h \in \text{Homeo}(X) : h(C) \subseteq D}$

for $C, D \in \mathcal{CO}(X)$ =compact-open subsets of X

BUT

AAut(T) is not closed with respect to this topology!

Instead of top-down, go bottom-up:

AAut($\mathcal T)$ preserves the opens of $\mathsf{St}_\mathsf{Aut(\mathcal T)}(v) \leq_o \mathsf{Aut(\mathcal T)}$ for any $v \in VT$, i.e., $\forall g \in \mathsf{AAut}(\mathcal{T}) : \forall \mathcal{U} \leq_o \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v) : \mathcal{U} \cap g \mathcal{U} g^{-1} \leq_o \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v).$

Opens of $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ are, for any finite subtree $A \ni v$

$$
Fix(A) = \bigcap_{a \in A} St(a) = \prod_{\text{leaves of } A} rst(u)
$$

rst(u) = {g ∈ Aut $T|\forall w \notin T_u : gw = w$ } rigid stabiliser

Instead of top-down, go bottom-up:

AAut($\mathcal T)$ preserves the opens of $\mathsf{St}_\mathsf{Aut(\mathcal T)}(v) \leq_o \mathsf{Aut(\mathcal T)}$ for any $v \in VT$, i.e., $\forall g \in \mathsf{AAut}(\mathcal{T}) : \forall \mathcal{U} \leq_o \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v) : \mathcal{U} \cap g \mathcal{U} g^{-1} \leq_o \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v).$

Opens of $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ are, for any finite subtree $A \ni v$

$$
Fix(A) = \bigcap_{a \in A} St(a) = \prod_{\text{leaves of } A} rst(u)
$$

rst(u) = {g ∈ Aut $T|\forall w \notin T_u : gw = w$ } rigid stabiliser

Instead of top-down, go bottom-up:

AAut($\mathcal T)$ preserves the opens of $\mathsf{St}_\mathsf{Aut(\mathcal T)}(v) \leq_o \mathsf{Aut(\mathcal T)}$ for any $v \in VT$, i.e., $\forall g \in \mathsf{AAut}(\mathcal{T}) : \forall \mathcal{U} \leq_o \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v) : \mathcal{U} \cap g \mathcal{U} g^{-1} \leq_o \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v).$

Opens of $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ are, for any finite subtree $A \ni v$

$$
Fix(A) = \bigcap_{a \in A} St(a) = \prod_{\text{leaves of } A} rst(u)
$$

rst(u) = {g ∈ Aut $T|\forall w \notin T_u : gw = w$ } rigid stabiliser

 $G = \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ is locally decomposable:

for every $U\in\mathcal{CO}(X)$: $\mathsf{rst}_G(U)\times\mathsf{rst}_G(U^\perp)$ is open in $G.$

This is what guarantees that the topology of $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ can be induced up to a topology on AAut(T), so that $\mathsf{St}_\mathsf{Aut(\mathcal{T})}(v)$ is an open subgroup. As $\mathsf{St}_\mathsf{Aut(\mathcal{T})}(v)$ is compact, $\mathsf{AAut}(\mathcal{T})$ is tdlc with this topology.

 $G = \mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ is locally decomposable:

for every $U\in\mathcal{CO}(X)$: $\mathsf{rst}_G(U)\times\mathsf{rst}_G(U^\perp)$ is open in $G.$

This is what guarantees that the topology of $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ can be induced up to a topology on AAut(T), so that $\mathsf{St}_\mathsf{Aut(\mathcal{T})}(v)$ is an open subgroup. As $\mathsf{St}_\mathsf{Aut(\mathcal{T})}(v)$ is compact, $\mathsf{AAut}(\mathcal{T})$ is tdlc with this topology.

No need to start off with group G to get full group:

 $\mathcal{BI}(M) =$ Booleanisation of M : take all restrictions of M to $CO(X)$, allow partial composition, inversion, and finite disjoint joins. $F(M)$ =group of units of $\mathcal{BI}(M)$. AAut(T) = $F(M)$ where $M \leq PHomeo_c(X)$ is the inverse monoid

generated by $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ and

 $\mathcal{BI}(M)$ =Booleanisation of M: take all restrictions of M to $CO(X)$, allow partial composition, inversion, and finite disjoint joins. $F(M)$ =group of units of $\mathcal{BI}(M)$.

AAut(T) = $F(M)$ where $M \leq PHomeo_c(X)$ is the inverse monoid

generated by $\mathsf{St}_{\mathsf{Aut}(\mathcal{T})}(v)$ and

 $\mathcal{BI}(M)$ =Booleanisation of M: take all restrictions of M to $CO(X)$, allow partial composition, inversion, and finite disjoint joins. $F(M)$ =group of units of $\mathcal{BI}(M)$.

M is a locally decomposable topological inverse monoid:

• acts continuously on χ

•
$$
\forall e \in \mathcal{CO}(X) : M \rightarrow Me \times Me^{\perp}, m \mapsto me \times me^{\perp}
$$
 is
continuous and open

Basic open neighbourhoods of $f \in \mathcal{BI}(M)$ are $Nf \cap fN$ for N open neighbourhood of 1 in M.

 \Rightarrow topology on $\mathcal{BI}(M)$ has continuous composition, inversion and disjoint joins and makes M open in $\mathcal{BI}(M)$.

Non-discrete topological full groups

 M is a topological inverse monoid that is locally decomposable:

- acts continuously on X
- $\forall e \in \mathcal{CO}(X) : M \to M e \times M e^{\perp}, m \mapsto me \times me^{\perp}$ is continuous and open

basic open neighbourhoods of $f \in \mathcal{BI}(M)$ are $Nf \cap fN$ for N open neighbourhood of 1 in M.

Non-discrete topological full groups

 M is a topological inverse monoid that is locally decomposable:

- acts continuously on X
- $\forall e \in \mathcal{CO}(X) : M \to M e \times M e^{\perp}, m \mapsto me \times me^{\perp}$ is continuous and open

basic open neighbourhoods of $f \in \mathcal{BI}(M)$ are $Nf \cap fN$ for N open neighbourhood of 1 in M.

Theorem (G+Reid)

If $M <$ PHomeo_c (X) is locally decomposable inverse monoid, there is a unique inverse monoid topology on $\mathcal{BI}(M)$ that extends that of M and makes taking disjoint joins continuous.

M is tdlc/discrete iff $\mathcal{BI}(M)$ is tdlc/discrete.

Alternating full groups of inverse monoids $M <$ PHomeo_c (X)

 $A(M) = \langle h \in F(M) : h$ preserves a partition and does an even permutation on the parts $\rangle \leq F(M)$

Theorem (Nekrashevych, '17)

If M is minimal (all orbits are dense) then $A(M)$ is simple.

Alternating full groups of inverse monoids \overline{M} < PHomeo_c(X)

 $A(M) = \langle h \in F(M) : h$ preserves a partition and does an even permutation on the parts \rangle < $F(M)$

Theorem (Nekrashevych, '17)

If M is minimal (all orbits are dense) then $A(M)$ is simple.

Theorem (G+Reid, after Nekrashevych)

If M is locally decomposable, compactly generated and expansive (the M-orbits of a clopen partition of X separate points) then A(M) is compactly generated.

Alternating full groups of inverse monoids $M <$ PHomeo_c (X)

 $A(M) = \langle h \in F(M) : h$ preserves a partition and does an even permutation on the parts $\rangle \leq F(M)$

Theorem (Nekrashevych, '17)

If M is minimal (all orbits are dense) then $A(M)$ is simple.

Theorem (G+Reid, after Nekrashevych)

If M is locally decomposable, compactly generated and expansive (the M-orbits of a clopen partition of X separate points) then A(M) is compactly generated.

Theorem (G+Reid)

If M is locally decomposable, compactly generated, expansive, minimal and non-discrete then $\overline{A(M)}=A(M)=F(M)'$ is open in $F(M)$ and simple.

Γ =closure of Grigorchuk group in Aut(rooted binary tree)

(any other profinite branch group will do)

 $G = \langle \Gamma, V_2 \rangle$

(Instead of V_2 , take a compact subset of PHomeo_c(X) that preserves the opens of Γ)

Apply theorems

 $A(G)$ is simple tdlc group, non-discrete

Example: Coloured Neretin groups [Lederle]

There must be many more!

- \bullet non-discrete actions on k -graphs?
- other groupoids that do not obviously come from group actions?

...