Non-discrete topological full groups

Alejandra Garrido (joint with Colin Reid) Cartan subalgebras in operator algebras and topological full groups BIRS Banff, 5th November 2024

Universidad Complutense de Madrid & ICMAT Madrid

For reasons that I don't have time to explain, we want examples of simple groups that are totally disconnected and locally compact (tdlc), not discrete and generated by a compact subset.

Examples

- $\operatorname{PSL}_n(\mathbb{Q}_p), n \geq 2, p$ prime
- Aut⁺(T) =orientation-preserving automorphisms of an infinite tree T (≠ line)

Full groups of Cantor space actions give examples of simple groups but these are countable....

 $AAut(T) = \{g \in Homeo(X) \text{ for which there is a finite clopen}$ partition of $X = \bigsqcup_{i=1}^{n} U_i$ and $g_1, \ldots, g_n \in Aut(T)$ such that $g \upharpoonright_{U_i} = g_i \upharpoonright_{U_i}, i = 1, \ldots, n.\}$

 $AAut(T) = \{g \in Homeo(X) \text{ for which there is a finite clopen}$ partition of $X = \bigsqcup_{i=1}^{n} U_i$ and $g_1, \ldots, g_n \in Aut(T)$ such that $g \upharpoonright_{U_i} = g_i \upharpoonright_{U_i}, i = 1, \ldots, n.\}$

Defined in [Neretin, 1984], simplicity in [Kapoudjian, 1994]

AAut(T) = { $g \in$ Homeo(X) for which there is a finite clopen partition of $X = \bigsqcup_{i=1}^{n} U_i$ and $g_1, \ldots, g_n \in$ Aut(T) such that $g \upharpoonright_{U_i} = g_i \upharpoonright_{U_i}, i = 1, \ldots, n$.} = F(Aut(T)), piecewise full group of Aut(T)

Defined in [Neretin, 1984], simplicity in [Kapoudjian, 1994]

 $AAut(T) \leq Homeo(X)$, which has a natural group topology: basic opens are

 ${h \in \operatorname{Homeo}(X) : h(C) \subseteq D}$

for $C, D \in \mathcal{CO}(X)$ =compact-open subsets of X

 $AAut(T) \leq Homeo(X)$, which has a natural group topology: basic opens are

 ${h \in \operatorname{Homeo}(X) : h(C) \subseteq D}$

for $C, D \in \mathcal{CO}(X)$ =compact-open subsets of X

BUT

AAut(T) is not closed with respect to this topology!

Instead of top-down, go bottom-up:

AAut(*T*) preserves the opens of $\operatorname{St}_{\operatorname{Aut}(T)}(v) \leq_o \operatorname{Aut}(T)$ for any $v \in VT$, i.e., $\forall g \in \operatorname{AAut}(T) : \forall U \leq_o \operatorname{St}_{\operatorname{Aut}(T)}(v) : U \cap gUg^{-1} \leq_o \operatorname{St}_{\operatorname{Aut}(T)}(v).$

Opens of $St_{Aut(T)}(v)$ are, for any finite subtree $A \ni v$

$$Fix(A) = \bigcap_{a \in A} St(a) = \prod_{\text{leaves of } A} rst(u)$$

 $\mathsf{rst}(u) = \{g \in \mathsf{Aut} \ T | \forall w \notin T_u : gw = w\}$ rigid stabiliser

Instead of top-down, go bottom-up:

AAut(*T*) preserves the opens of $\operatorname{St}_{\operatorname{Aut}(T)}(v) \leq_o \operatorname{Aut}(T)$ for any $v \in VT$, i.e., $\forall g \in \operatorname{AAut}(T) : \forall U \leq_o \operatorname{St}_{\operatorname{Aut}(T)}(v) : U \cap gUg^{-1} \leq_o \operatorname{St}_{\operatorname{Aut}(T)}(v).$

Opens of $St_{Aut(T)}(v)$ are, for any finite subtree $A \ni v$

$$\operatorname{Fix}(A) = \bigcap_{a \in A} \operatorname{St}(a) = \prod_{\text{leaves of } A} \operatorname{rst}(u)$$

 $\mathsf{rst}(u) = \{g \in \mathsf{Aut} \ T | \forall w \notin T_u : gw = w\}$ rigid stabiliser

Instead of top-down, go bottom-up:

AAut(*T*) preserves the opens of $\operatorname{St}_{\operatorname{Aut}(T)}(v) \leq_o \operatorname{Aut}(T)$ for any $v \in VT$, i.e., $\forall g \in \operatorname{AAut}(T) : \forall U \leq_o \operatorname{St}_{\operatorname{Aut}(T)}(v) : U \cap gUg^{-1} \leq_o \operatorname{St}_{\operatorname{Aut}(T)}(v).$

Opens of $St_{Aut(T)}(v)$ are, for any finite subtree $A \ni v$

$$Fix(A) = \bigcap_{a \in A} St(a) = \prod_{\text{leaves of } A} rst(u)$$

 $\mathsf{rst}(u) = \{g \in \mathsf{Aut} \ T | \forall w \notin T_u : gw = w\}$ rigid stabiliser

 $G = St_{Aut(T)}(v)$ is locally decomposable:

for every $U \in \mathcal{CO}(X)$: $rst_G(U) \times rst_G(U^{\perp})$ is open in G.

This is what guarantees that the topology of $St_{Aut(T)}(v)$ can be induced up to a topology on AAut(T), so that $St_{Aut(T)}(v)$ is an open subgroup. As $St_{Aut(T)}(v)$ is compact, AAut(T) is tdlc with this topology. $G = St_{Aut(T)}(v)$ is locally decomposable:

for every $U \in \mathcal{CO}(X)$: $rst_G(U) \times rst_G(U^{\perp})$ is open in G.

This is what guarantees that the topology of $St_{Aut(T)}(v)$ can be induced up to a topology on AAut(T), so that $St_{Aut(T)}(v)$ is an open subgroup. As $St_{Aut(T)}(v)$ is compact, AAut(T) is tdlc with this topology.

No need to start off with group G to get full group:

 $\mathcal{BI}(M) =$ Booleanisation of M: take all restrictions of M to $\mathcal{CO}(X)$, allow partial composition, inversion, and finite disjoint joins. F(M) =group of units of $\mathcal{BI}(M)$.

AAut(T) = F(M) where $M \leq PHomeo_c(X)$ is the inverse monoid

generated by $St_{Aut(T)}(v)$ and

 $\mathcal{BI}(M) =$ Booleanisation of M: take all restrictions of M to $\mathcal{CO}(X)$, allow partial composition, inversion, and finite disjoint joins. F(M) =group of units of $\mathcal{BI}(M)$.

AAut(T) = F(M) where $M \leq PHomeo_c(X)$ is the inverse monoid

generated by $St_{Aut(T)}(v)$ and

 $\mathcal{BI}(M) =$ Booleanisation of M: take all restrictions of M to $\mathcal{CO}(X)$, allow partial composition, inversion, and finite disjoint joins. F(M) =group of units of $\mathcal{BI}(M)$.

M is a locally decomposable topological inverse monoid:

• acts continuously on X

Basic open neighbourhoods of $f \in \mathcal{BI}(M)$ are $Nf \cap fN$ for N open neighbourhood of 1 in M.

 \Rightarrow topology on $\mathcal{BI}(M)$ has continuous composition, inversion and disjoint joins and makes M open in $\mathcal{BI}(M)$.

Non-discrete topological full groups

M is a topological inverse monoid that is locally decomposable:

- acts continuously on X
- ∀e ∈ CO(X) : M → Me × Me[⊥], m → me × me[⊥] is continuous and open

basic open neighbourhoods of $f \in \mathcal{BI}(M)$ are $Nf \cap fN$ for N open neighbourhood of 1 in M.

Non-discrete topological full groups

M is a topological inverse monoid that is locally decomposable:

- acts continuously on X
- ∀e ∈ CO(X) : M → Me × Me[⊥], m → me × me[⊥] is continuous and open

basic open neighbourhoods of $f \in \mathcal{BI}(M)$ are $Nf \cap fN$ for N open neighbourhood of 1 in M.

Theorem (G+Reid)

If $M \leq \mathsf{PHomeo}_c(X)$ is locally decomposable inverse monoid, there is a unique inverse monoid topology on $\mathcal{BI}(M)$ that extends that of M and makes taking disjoint joins continuous.

M is tdlc/discrete iff $\mathcal{BI}(M)$ is tdlc/discrete.

Alternating full groups of inverse monoids $M \leq PHomeo_c(X)$

 $A(M) = \langle h \in F(M) : h \text{ preserves a partition and does an even}$ permutation on the parts $\rangle \leq F(M)$

Theorem (Nekrashevych, '17)

If M is minimal (all orbits are dense) then A(M) is simple.

Alternating full groups of inverse monoids $M \leq PHomeo_c(X)$

 $A(M) = \langle h \in F(M) : h \text{ preserves a partition and does an even}$ permutation on the parts $\rangle \leq F(M)$

Theorem (Nekrashevych, '17)

If M is minimal (all orbits are dense) then A(M) is simple.

Theorem (G+Reid, after Nekrashevych)

If M is locally decomposable, compactly generated and expansive (the M-orbits of a clopen partition of X separate points) then A(M) is compactly generated.

Alternating full groups of inverse monoids $M \leq PHomeo_c(X)$

 $A(M) = \langle h \in F(M) : h \text{ preserves a partition and does an even}$ permutation on the parts $\rangle \leq F(M)$

Theorem (Nekrashevych, '17)

If M is minimal (all orbits are dense) then A(M) is simple.

Theorem (G+Reid, after Nekrashevych)

If M is locally decomposable, compactly generated and expansive (the M-orbits of a clopen partition of X separate points) then A(M) is compactly generated.

Theorem (G+Reid)

If M is locally decomposable, compactly generated, expansive, minimal and non-discrete then $\overline{A(M)} = A(M) = F(M)'$ is open in F(M) and simple. Γ =closure of Grigorchuk group in Aut(rooted binary tree)

(any other profinite branch group will do)

 $G = \langle \Gamma, V_2 \rangle$

(Instead of V_2 , take a compact subset of $PHomeo_c(X)$ that preserves the opens of Γ)

Apply theorems

A(G) is simple tdlc group, non-discrete

Example: Coloured Neretin groups [Lederle]

There must be many more!

- non-discrete actions on k-graphs?
- other groupoids that do not obviously come from group actions?

• ...