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Main Philosophy

Set-up: Discrete group G acting partially on a unital C∗-algebra A,

G ↷ A

Goal: Identify dynamical properties, that give desired C∗-algebraic

properties, particularly regarding the ideal structure

Specific question:

If G acts (partially) on A, we obtain a C∗-inclusion A ⊆ A⋊r G , where

A⋊r G encodes A as well as the (partial) dynamics.

We want to find a dynamical property that characterizes when the

inclusion has the ideal intersection property (for any {0} ≠ J ⊴ A⋊r G ,

A ∩ J ̸= {0}).
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History

Global Action

• Kawamura & Tomiyama

(1990) give a condition for

the IIP to hold in the case

of commutative C∗-algebras

• Kennedy and Schafhauser

(2019) gave a

characterization of IIP for

nc crossed products under

some conditions

Partial Action

• Exel, Laca & Quigg (2002)

show that topologically free

partial actions on

commutative C∗-algebras

have the IIP

• Lebedev (2003) generalizes

this to non-commutative

C∗-algebras

• Giordano & Sierakowski

(2014) give another

condition guaranteeing the

IIP

Larissa Kroell Ideal Intersection Property for Partial Actions 2



Partial Actions on Sets

Global Action: G ↷ X via a group homomorphism α : G → Homeo(X ).

U ⊆ X invariant open set, αg |U still a group action.

gh

g

h

U U

What if U is not invariant?

g

h

gh
U U U
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Partial Actions

Definition

A partial action of a discrete group G on a topological space X is a pair

({Ug}g∈G , {αg}g∈G ) where Ug are open sets and αg : Ug−1 → Ug are

homeomorphisms such that

1. Ue = X and αe = id

2. αg (Ug−1 ∩ Uh) = Ug ∩ Ugh

3. αg (αh(x)) = αgh(x) whenever x ∈ Uh−1 ∩ U(gh)−1

Fact

Every partial action on a topological space arises from a global action

as a restriction.
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Partial actions on C*-algebras

For a compact Hausdorff space X using Gelfand duality we obtain the

appropriate notion of partial action on a unital C∗-algebra A:

Ug ⊆ X open ⇝ Ag ⊴ A

αg : Ug−1 → Ug homeomorphism ⇝ αg : Ag−1 → Ag
∗-isomorphism

(partial *-automorphisms)

Fact:

Not every partial C∗-dynamical system on a unital C∗-algebra arises as

a restriction of a global action to an ideal!

If each ideal is unital, we can construct a globalization.

Larissa Kroell Ideal Intersection Property for Partial Actions 5



Partial actions on C*-algebras

For a compact Hausdorff space X using Gelfand duality we obtain the

appropriate notion of partial action on a unital C∗-algebra A:

Ug ⊆ X open ⇝ Ag ⊴ A

αg : Ug−1 → Ug homeomorphism ⇝ αg : Ag−1 → Ag
∗-isomorphism

(partial *-automorphisms)

Fact:

Not every partial C∗-dynamical system on a unital C∗-algebra arises as

a restriction of a global action to an ideal!

If each ideal is unital, we can construct a globalization.

Larissa Kroell Ideal Intersection Property for Partial Actions 5



Crossed products

Global Action: From G ↷ A we can build a new C*-algebra A⋊r G

generated by A, and G as unitaries implementing the action.

Similarly, for partial actions we can think of A⋊r G as a particular

completion of the covariance algebra

C(α) = span{aus | a ∈ As , s ∈ G}

Global Action

us unitaries

ausbut = aαs(b)ust

Partial Action

us partial isometries

ausbut = αs(αs−1(a)b)ust

Question: How can we give a characterization of the Ideal Intersection

Property?
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Partial Actions as Groupoids

Given a partial action ({Ug}g∈G , {αg}g∈G ) of G on a compact Hausdorff

space X , we can associate a corresponding groupoid

Gα = {(x , g , y) ∈ X × G × X | y ∈ Ug−1 , αg (y) = x}.

Note: Kennedy, Kim, Li, Raum & Ursu (2022) characterized IIP for

essential groupoid C*-algebras for étale groupoids G with LCH unit space

under the assumption that G is topologically transitive and either

Hausdorff or σ-compact.
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Expanding our toolbox: Injective Envelopes

Global Actions: Given a group action on a C∗-algebra A, we have

A ⊆ I (A) ⊆ IG (A)

Global actions: We have the following nice equivalences

• A ⊆ A⋊r G has the Ideal Intersection Property (IIP)

• I (A) ⊆ I (A)⋊r G has the IIP

• IG (A) ⊆ IG (A)⋊r G has the IIP

Need to construct partial G -injective

envelope in appropriate category

Larissa Kroell Ideal Intersection Property for Partial Actions 8
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(monotone complete), ex-
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What are we working with?

Proposition (Kennedy-K-Sehnem)

A partial action ({Ag}g∈G , {αg}g∈G ), induces a unital partial action

({I (A)g}g∈G , {I (α)g}g∈G ) on the injective envelope I (A). We have

I (A)g = I (A)pg for a central projection pg ∈ Z (I (A)).

Additionally, A ⊆ A⋊r G has the IIP if and only if I (A) ⊆ I (A)⋊r G

does.

Up-Shot: We can work with unital partial actions!

Definition

A u.c.p. map φ : A → B between is called a G -morphisms, if

1. φ(pg ) = qq for all g ∈ G (where Ag = Apg , Bg = Bqg ),

2. φ(αg (x)) = βg (φ(x)) for x ∈ Ag−1 for all g ∈ G .

If φ is additionally completely isometric, we call φ a G -embedding.
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Injective Envelopes for Partial Actions

Theorem (Kennedy-K-Sehnem)

A unital partial action ({Ag}g∈G , {αg}g∈G ) admits a G -injective

envelope ({IG (A)g}g∈G , {IG (α)g}g∈G ) in the category of generalized

partial actions.

The G -injective envelope is unique and (IG (A)g∈G , IG (α)g∈G ) is a

partial C∗-dynamical system, i.e. IG (A)g ⊴ IG (A).

Note: If ({Ag}g∈G , {αg}g∈G ) is non-unital, define IG (A) = IG (I (A)).
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Non-triviality conditions for partial automorphisms

Goal: We need some non-commutative notion of freeness. Need to

ensure that there is no inner part!

Definition (Kennedy-K-Sehnem)

Consider a partial *-automorphism α : B → C for B,C ⊴ A. Then α is

inner if there exists a partial isometry w ∈ A such that α(x) = wxw∗

for all x ∈ B. We call α quasi-inner if there exists w ∈ I (A) such that

α(x) = wxw∗ for all x ∈ B.

Good news: The structure of the injective envelope allows us to define

this! A partial *-automorphism on I (A) decomposes into an inner and a

non-inner part.
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Proper outerness

Definition (Proper outerness)

Consider a partial *-automorphism α : B → C for B,C ⊴ A. We call α

properly outer if the corresponding *-isomorphism α̂ : I (B) → I (C ) has

no inner part.

We call a partial C∗-dynamical system ({Ag}g∈G , {αg}g∈G ) properly

outer if each αg , g ̸= e, is properly outer.

Proper outerness by default

Suppose α : B → C for B,C ⊴ A is a *-isomorphism with

I (B) ∩ I (C ) = {0}. Then α is properly outer.

Conversely: If α is quasi-inner, then I (B) = I (C ).
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The Result

Theorem (Kennedy-K-Sehnem)

A partial C∗-dynamical system ({Ag}g∈G , {αg}g∈G ) has the ideal

intersection property if ({IG (A)g}g∈G , {IG (α)g}g∈G ) is properly outer.

Additionally, if ({Ag}g∈G , {αg}g∈G ) has vanishing obstruction, the

converse is also true.

Note: Proof relies on equivariant versions of pseudo-expectations.
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A counterexample

G = Z3 × K4, where K4 = {e, u, v , uv} denotes the Klein four-group,

A = M2 ⊕M2, A1 := M2 ⊕ 0 and A2 := 0⊕M2

σ : 0⊕M2 → M2 ⊕ 0: 0⊕ a 7→ a⊕ 0,

Wu =

[
1 0

0 −1

]
, Wv =

[
0 1

1 0

]
, Wuv = WuWv =

[
0 1

−1 0

]
.

Define the following partial action of G on A via

α(0,e) = idA, α(0,u) = Ad(Wu ⊕Wu), α(0,v) = Ad(Wv ⊕Wv )

α(0,uv) = Ad(WUV ⊕WUV )

and

α(1,h) : A2 → A1 : 0⊕ a 7→ (Ad(Wh) ◦ σ)(0⊕ a), for all h ∈ K4,

α(2,h) : A1 → A2 : a⊕ 0 7→ (Ad(Wh) ◦ σ−1)(a⊕ 0), for all h ∈ K4,

where we define We to be the identity matrix.
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Counterexample continued

We have A⋊r G ∼= M8, so A ⊆ A⋊r G has the intersection property.

However, the system is not properly outer.

Issue: The partial isometries implementing the inner parts of the

automorphisms can carry an extra ”twist”, which obstructs the other

direction.

Good news: If we exempt cases with this twist we can actually prove the

converse, we call this vanishing obstruction.

Larissa Kroell Ideal Intersection Property for Partial Actions 15



What does this mean if A is commutative?

Definition

A partial action on a topological space ({Xg}g∈G , {θg}g∈G ) is called

topologically free if for each g ̸= e, the fix point set

Fg = {x ∈ Xg−1 | θg (x) = x}

has empty interior.

Theorem (Kennedy-K-Sehnem)

C(X ) ⊆ C(X )⋊r G has the IIP if and only if the partial action on the

spectrum of IG (C(X )) is (topologically) free.
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Integer Partial actions

Let I , J ⊴ A be regular ideals and α : I → J be a *-isomorphism. We can

define a partial action of Z on A as follows

A0 = A,

An+1 = {a ∈ J |α−1(a) ∈ An}, for n ≥ 0

An−1 = {a ∈ I |α(a) ∈ An}, for n ≤ 0

Proposition

Suppose ∩n∈ZAn = {0}, then α is properly outer and A ⊆ A⋊r Z has

the ideal intersection property.
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Summary

• Existence of a G -injective envelope for partial actions

• A notion of proper outerness for partial actions

• Proper outer partial C∗-dynamical systems have IIP

• Identified an obstruction for the other direction with counterexample

• Characterization in the commutative case

• Examples of integer partial actions
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