Ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces

### Xin Li

### University of Glasgow



- A top. groupoid is ample if it has a basis of compact open bisections.

- A top. groupoid is ample if it has a basis of compact open bisections.

**Definition**: Let G be an ample groupoid. The topological full group F(G) is the group of global bisections, i.e., compact open bisections  $\sigma \subseteq G$  with  $r(\sigma) = G^{(0)} = s(\sigma)$ .

- A top. groupoid is ample if it has a basis of compact open bisections.

**Definition**: Let G be an ample groupoid. The topological full group F(G) is the group of global bisections, i.e., compact open bisections  $\sigma \subseteq G$  with  $r(\sigma) = G^{(0)} = s(\sigma)$ .

- A top. groupoid is ample if it has a basis of compact open bisections.

**Definition**: Let G be an ample groupoid. The topological full group F(G) is the group of global bisections, i.e., compact open bisections  $\sigma \subseteq G$  with  $r(\sigma) = G^{(0)} = s(\sigma)$ .

**Question**: How to compute group homology of F(G)?

- Matui's AH conjecture: There is a short exact sequence $H_0(G,\mathbb{Z}/2) o H_1(m{F}(G)) o H_1(G) o 0.$ 

- Matui's AH conjecture: There is a short exact sequence $H_0(G,\mathbb{Z}/2) o H_1(m{F}(G)) o H_1(G) o 0.$ <u>Here groupo</u>id homology  $H_*(G)$  can be defined

as homology of bar complexes,

- Matui's AH conjecture: There is a short exact sequence $H_0(G,\mathbb{Z}/2)\to H_1(\boldsymbol{F}(G))\to H_1(G)\to 0.$ 

Here groupoid homology  $H_*(G)$  can be defined

- as homology of bar complexes,
- as homology of classifying spaces,

- Matui's AH conjecture: There is a short exact sequence

 $H_0(G,\mathbb{Z}/2) \to H_1(\boldsymbol{F}(G)) \to H_1(G) \to 0.$ 

Here groupoid homology  $H_*(G)$  can be defined

- as homology of bar complexes,
- as homology of classifying spaces,
- or using Tor-functors.

- Matui's AH conjecture: There is a short exact sequence

 $H_0(G,\mathbb{Z}/2) \to H_1(\boldsymbol{F}(G)) \to H_1(G) \to 0.$ 

Here groupoid homology  $H_*(G)$  can be defined

- as homology of bar complexes,
- as homology of classifying spaces,
- or using Tor-functors.

Partial results by Matui, Nyland, Ortega, Scarparo, ...

- Matui's AH conjecture: There is a short exact sequence

 $H_0(G,\mathbb{Z}/2) \to H_1(\boldsymbol{F}(G)) \to H_1(G) \to 0.$ 

Here groupoid homology  $H_*(G)$  can be defined

- as homology of bar complexes,
- as homology of classifying spaces,
- or using Tor-functors.

Partial results by Matui, Nyland, Ortega, Scarparo, ...

- **Theorem** (Szymik-Wahl):  $H_*(V_2) \cong \{0\}$  for all \* > 0.

**Question**: How to compute group homology of F(G)?

**Question**: How to compute group homology of F(G)?

- Idea:
  - For the relate group homology of F(G) to groupoid homology of G.

**Question**: How to compute group homology of F(G)?

#### - Idea:

- For the relate group homology of F(G) to groupoid homology of G.
- This helps because groupoid homology is much more accessible.

#### **Question**: How to compute group homology of F(G)?

#### - Idea:

- For the relate group homology of F(G) to groupoid homology of G.
- This helps because groupoid homology is much more accessible. For example, groupoid homology has been computed for
  - ► AF groupoids,
  - Transformation groupoids,
  - Tiling groupoids,
  - Graph groupoids,
  - Higher rank graph groupoids,
  - Groupoids of self-similar actions,
  - Groupoids of piecewise affine transformations,

5



### **Theorem** (L): $H_*(G) \cong \tilde{H}_*(\mathbb{K}\mathfrak{B})$ for every ample groupoid G.

**Theorem** (L):  $H_*(G) \cong \tilde{H}_*(\mathbb{KB})$  for every ample groupoid G.

**Theorem** (L): If G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points, then  $H_*(\mathbf{F}(G)) \cong H_*(\Omega_0^{\infty} \mathbb{K}\mathfrak{B}).$ 

**Theorem** (L):  $H_*(G) \cong \tilde{H}_*(\mathbb{KB})$  for every ample groupoid G.

**Theorem** (L): If G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points, then  $H_*(F(G)) \cong H_*(\Omega_0^\infty \mathbb{KB}).$ 

G is minimal if for all  $x \in G^{(0)}$ ,  $G.x := \{r(g): s(g) = x\}$  is dense in  $G^{(0)}$ .

**Theorem** (L):  $H_*(G) \cong \widetilde{H}_*(\mathbb{KB})$  for every ample groupoid G.

**Theorem** (L): If G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points, then  $H_*(F(G)) \cong H_*(\Omega_0^\infty \mathbb{KB}).$ 

G is minimal if for all  $x \in G^{(0)}$ ,  $G.x := \{r(g): s(g) = x\}$  is dense in  $G^{(0)}$ . G has comparison if for all non-empty, compact open  $U, V \subseteq G^{(0)}$ ,  $\mu(U) < \mu(V) \forall 0 \neq \mu \in M(G)$  $\Rightarrow \exists \text{ compact open bisection } \sigma \subseteq G : s(\sigma) = U, r(\sigma) \subseteq V.$ 





### <u>Consequences</u>

Suppose that G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points.

### Consequences

Suppose that G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points.

**Corollary** (L): If  $H_*(G) \cong \{0\}$  for all \* < k, then  $H_*(\mathbf{F}(G)) \cong \{0\}$  for all 0 < \* < k and  $H_k(\mathbf{F}(G)) \cong H_k(G)$ .

### Consequences

Suppose that G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points.

**Corollary** (L): If  $H_*(G) \cong \{0\}$  for all \* < k, then  $H_*(\mathbf{F}(G)) \cong \{0\}$  for all 0 < \* < k and  $H_k(\mathbf{F}(G)) \cong H_k(G)$ .

**Corollary** (L): Rational group homology of F(G) is given by  $H_*(F(G), \mathbb{Q}) \cong \operatorname{Ext}(H^{\operatorname{odd}}_*(G, \mathbb{Q})) \otimes \operatorname{Sym}(H^{\operatorname{even}}_*(G, \mathbb{Q})).$ 

### Consequences

Suppose that G is an ample groupoid which is minimal, has comparison, and  $G^{(0)}$  has no isolated points.

**Corollary** (L): If  $H_*(G) \cong \{0\}$  for all \* < k, then  $H_*(\mathbf{F}(G)) \cong \{0\}$  for all 0 < \* < k and  $H_k(\mathbf{F}(G)) \cong H_k(G)$ .

**Corollary** (L): Rational group homology of F(G) is given by  $H_*(F(G), \mathbb{Q}) \cong \operatorname{Ext}(H^{\operatorname{odd}}_*(G, \mathbb{Q})) \otimes \operatorname{Sym}(H^{\operatorname{even}}_*(G, \mathbb{Q})).$ 

**Corollary** (L): The following sequence is exact

 $H_2(\boldsymbol{F}(G)') \to H_2(G) \to H_0(G, \mathbb{Z}/2) \to H_1(\boldsymbol{F}(G)) \to H_1(G) \to 0.$ 

# Ideas

- How to construct  $\mathfrak{B}$ ?

### Ideas

- How to construct B?

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

8

- How to construct B?

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

But how to define  $\oplus$ ?

- How to construct B?

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

But how to define  $\oplus$ ? Idea:  $\oplus \cong \amalg$ 

- How to construct B?

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

But how to define  $\oplus$ ? Idea:  $\oplus \cong \amalg$  & Amplify!

- How to construct B?

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

But how to define  $\oplus$ ? Idea:  $\oplus \triangleq \amalg$  & Amplify! Set  $obj\mathfrak{B} := compact$  open subspaces of  $\mathbb{N} \times G^{(0)}$ ,

- How to construct  $\mathfrak{B}?$ 

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

But how to define  $\oplus$ ? Idea:  $\oplus = \amalg \&$  Amplify!

Set  $\operatorname{obj}\mathfrak{B} := \operatorname{compact}$  open subspaces of  $\mathbb{N} \times G^{(0)}$ ,  $\operatorname{mor}\mathfrak{B} := \operatorname{compact}$  open bisections of  $\mathcal{R} \times G$ , where  $\mathcal{R} = \mathbb{N} \times \mathbb{N}$ .

- How to construct B?

Idea: A compact open bisection  $\sigma \subseteq G$  should give a morphism in  $\mathfrak{B}$ ,  $r(\sigma) \xleftarrow{\sigma} s(\sigma)$ .

But how to define  $\oplus$ ? Idea:  $\oplus = \amalg \&$  Amplify!

Set  $obj\mathfrak{B} := compact$  open subspaces of  $\mathbb{N} \times G^{(0)}$ ,  $mor\mathfrak{B} := compact$  open bisections of  $\mathcal{R} \times G$ , where  $\mathcal{R} = \mathbb{N} \times \mathbb{N}$ .

Now we can define

 $(U_1,\ldots,U_m)\oplus(V_1,\ldots,V_n):=(U_1,\ldots,U_m,V_1,\ldots,V_n).$ 



