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- Theorem (Szymik-Wahl): H,(V,) = {0} for all % > 0.
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Question: How to compute group homology of F(G)?

- Idea:

» Try to relate group homology of F(G) to groupoid homology of G.
P This helps because groupoid homology is much more accessible.
For example, groupoid homology has been computed for
» AF groupoids,
» Transformation groupoids,
Tiling groupoids,
Graph groupoids,
Higher rank graph groupoids,
Groupoids of self-similar actions,
Groupoids of piecewise affine transformations,
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G: ample
groupoid

(B,®): small
permutative
category

KB: algebraic

F(G): TFG

~ K-theory \_/,
spectrum

Q°KB: infinite
loop space
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G is minimal if for all x € G©, G.x:= {r(g): s(g) = x} is dense in G
G Hgas comparison if for all non-empty, compact open U,V C G©),

A(U) < (V) V0 # p e M(G)
= Jcompact open bisection 0 C G : s(o) = U,r(c) C V.
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Consequences

Suppose that G is an ample groupoid which is minimal, has comparison,
and G© has no isolated points.

Corollary (L): If H,(G) = {0} for all * < k, then
H.(F(G)) = {0} for all 0 < * < k and Hx(F(G)) = Hk(G).

Corollary (L): Rational group homology of F(G) is given by
- Hi(F(G),Q) = Ext(H2(G,Q)) ® Sym(H™*(G,Q)).-

- Corollary (L): The following sequence is exact

Ho(F(G)) = H5(G) — Ho(G, Z/2) — Hi(F(G)) = Hi(G) = 0.
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- How to construct B? -

Idea: A compact open bisection o C G should give a morphism in B,

r(o) << s(o).

But how to define &? Idea: & = 11 & Amplify!

- Set obj% :— compact open subspaces of N x G(©,
‘morB := compact open bisections of R x G, where R = N x N.

Now we can define
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