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Homology for topological full groups

- A top. groupoid is ample if it has a basis of compact open bisections.

De�nition: Let G be an ample groupoid. The topological full group
F (G ) is the group of global bisections, i.e., compact open bisections

σ ⊆ G with r(σ) = G (0) = s(σ).

Question: How to compute group homology of F (G )?
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Homology for topological full groups

- Matui's AH conjecture: There is a short exact sequence

H0(G ,Z/2)→ H1(F (G ))→ H1(G )→ 0.

Here groupoid homology H∗(G ) can be de�ned
▶ as homology of bar complexes,
▶ as homology of classifying spaces,
▶ or using Tor-functors.

Partial results by Matui, Nyland, Ortega, Scarparo, ...

- Theorem (Szymik-Wahl): H∗(V2) ∼= {0} for all ∗ > 0.
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Homology for topological full groups

Question: How to compute group homology of F (G )?

- Idea:
▶ Try to relate group homology of F (G) to groupoid homology of G .
▶ This helps because groupoid homology is much more accessible.

For example, groupoid homology has been computed for
▶ AF groupoids,
▶ Transformation groupoids,
▶ Tiling groupoids,
▶ Graph groupoids,
▶ Higher rank graph groupoids,
▶ Groupoids of self-similar actions,
▶ Groupoids of piecewise a�ne transformations,
▶ ...
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Homology for topological full groups

G : ample
groupoid

F (G ): TFG

(B,⊕): small
permutative
category

KB: algebraic
K-theory
spectrum

Ω∞KB: in�nite
loop space

?
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Main results

Theorem (L): H∗(G ) ∼= H̃∗(KB) for every ample groupoid G .

Theorem (L): If G is an ample groupoid which is minimal,
has comparison, and G (0) has no isolated points, then

H∗(F (G )) ∼= H∗(Ω
∞
0
KB).

G is minimal if for all x ∈ G (0), G .x := {r(g): s(g) = x} is dense in G (0).

G has comparison if for all non-empty, compact open U,V ⊆ G (0),

µ(U) < µ(V ) ∀ 0 ̸= µ ∈ M(G )

⇒ ∃ compact open bisection σ ⊆ G : s(σ) = U, r(σ) ⊆ V .
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Consequences

Suppose that G is an ample groupoid which is minimal, has comparison,
and G (0) has no isolated points.

Corollary (L): If H∗(G ) ∼= {0} for all ∗ < k, then
H∗(F (G )) ∼= {0} for all 0 < ∗ < k and Hk(F (G )) ∼= Hk(G ).

Corollary (L): Rational group homology of F (G ) is given by
H∗(F (G ),Q) ∼= Ext(Hodd

∗ (G ,Q))⊗ Sym(Heven
∗ (G ,Q)).

Corollary (L): The following sequence is exact

H2(F (G )′)→ H2(G )→ H0(G ,Z/2)→ H1(F (G ))→ H1(G )→ 0.
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Ideas

- How to construct B?

Idea: A compact open bisection σ ⊆ G should give a morphism in B,

r(σ)
σ←− s(σ).

But how to de�ne ⊕? Idea: ⊕ =̂ ⨿ & Amplify!

Set objB := compact open subspaces of N× G (0),
morB := compact open bisections of R× G , where R = N× N.

Now we can de�ne

(U1, . . . ,Um)⊕ (V1, . . . ,Vn) := (U1, . . . ,Um,V1, . . . ,Vn).
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End

Thank you very much!
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