Semi-Cartan subalgebras of twisted groupoid C*-Algebras

YING-FEN LIN

Queen's University Belfast joint work with Tristan Bice, Lisa Orloff Clark, and Kathryn McCormick

BIRS November 2024

Ying-Fen Lin Semi-Cartan subalgebras

イロト イヨト イヨト

э

Cartan pairs in C*-algebras (Renault 2008):

A pair (A, B) of C*-algebras is a *Cartan pair* and say that B is a *Cartan subalgebra* of A if B is a maximal abelian subalgebra of A containing an approximate unit for A, B is regular in A, and there is a faithful conditional expectation of A onto B.

All Cartan pairs arise as twisted groupoid algebras (of effective étale groupoids), and the groupoid and twist are unique.

・ 同 ト ・ ヨ ト ・ ヨ ト

A Hausdorff topological groupoid Σ is call a $\mathbb{T}\text{-}\mathsf{groupoid}$ if \exists a free continuous action of \mathbb{T} such that

$$t(ef) = (te)f = e(tf)$$
 for all $t \in \mathbb{T}, (e, f) \in \Sigma^{(2)}$.

A twist is a continuous open groupoid homomorphism $q: \Sigma \rightarrow G$ from a \mathbb{T} -groupoid Σ onto a locally compact Hausdorff étale groupoid G such that \mathbb{T} acts transitively on each fibre, i.e.,

 $q^{-1}(\{q(e)\}) = \mathbb{T}e$ for all $e \in \Sigma$.

• \exists groupoid isomorphism $\iota:\mathbb{T} imes G^{(0)} woheadrightarrow q^{-1}(G^{(0)})$ such that

 $\iota(t, q(\mathbf{r}(e)))e = te = e\iota(t, q(\mathbf{s}(e)))$ for all $e \in \Sigma$.

- Every twist is a proper map (as in K. Courtney, A. Duwenig, M.C. Georgescu, A. an Huef, and M.G. Viola (2024)).
- If $q: \Sigma \rightarrow G$ is a twist then Σ is locally compact.

A Hausdorff topological groupoid Σ is call a $\mathbb{T}\text{-}\mathsf{groupoid}$ if \exists a free continuous action of \mathbb{T} such that

$$t(ef) = (te)f = e(tf)$$
 for all $t \in \mathbb{T}, (e, f) \in \Sigma^{(2)}$.

A twist is a continuous open groupoid homomorphism $q: \Sigma \twoheadrightarrow G$ from a \mathbb{T} -groupoid Σ onto a locally compact Hausdorff étale groupoid G such that \mathbb{T} acts transitively on each fibre, i.e.,

$$q^{-1}(\{q(e)\}) = \mathbb{T}e$$
 for all $e \in \Sigma$.

• \exists groupoid isomorphism $\iota : \mathbb{T} \times G^{(0)} \twoheadrightarrow q^{-1}(G^{(0)})$ such that

 $\iota(t, q(\mathbf{r}(e)))e = te = e\iota(t, q(\mathbf{s}(e)))$ for all $e \in \Sigma$.

- Every twist is a proper map (as in K. Courtney, A. Duwenig, M.C. Georgescu, A. an Huef, and M.G. Viola (2024)).
- If $q: \Sigma \rightarrow G$ is a twist then Σ is locally compact.

A Hausdorff topological groupoid Σ is call a $\mathbb{T}\text{-}\mathsf{groupoid}$ if \exists a free continuous action of \mathbb{T} such that

$$t(ef) = (te)f = e(tf)$$
 for all $t \in \mathbb{T}, (e, f) \in \Sigma^{(2)}$.

A twist is a continuous open groupoid homomorphism $q: \Sigma \twoheadrightarrow G$ from a \mathbb{T} -groupoid Σ onto a locally compact Hausdorff étale groupoid G such that \mathbb{T} acts transitively on each fibre, i.e.,

$$q^{-1}(\{q(e)\}) = \mathbb{T}e$$
 for all $e \in \Sigma$.

• \exists groupoid isomorphism $\iota:\mathbb{T}\times G^{(0)}\twoheadrightarrow q^{-1}(G^{(0)})$ such that

$$\iota(t, q(\mathbf{r}(e)))e = te = e\iota(t, q(\mathbf{s}(e)))$$
 for all $e \in \Sigma$.

- Every twist is a proper map (as in K. Courtney, A. Duwenig, M.C. Georgescu, A. an Huef, and M.G. Viola (2024)).
- If $q: \Sigma \rightarrow G$ is a twist then Σ is locally compact.

A Hausdorff topological groupoid Σ is call a $\mathbb{T}\text{-}\mathsf{groupoid}$ if \exists a free continuous action of \mathbb{T} such that

$$t(ef) = (te)f = e(tf)$$
 for all $t \in \mathbb{T}, (e, f) \in \Sigma^{(2)}$.

A twist is a continuous open groupoid homomorphism $q: \Sigma \twoheadrightarrow G$ from a \mathbb{T} -groupoid Σ onto a locally compact Hausdorff étale groupoid G such that \mathbb{T} acts transitively on each fibre, i.e.,

$$q^{-1}(\{q(e)\}) = \mathbb{T}e$$
 for all $e \in \Sigma$.

• \exists groupoid isomorphism $\iota:\mathbb{T} imes G^{(0)}\twoheadrightarrow q^{-1}(G^{(0)})$ such that

$$\iota(t, q(\mathbf{r}(e)))e = te = e\iota(t, q(\mathbf{s}(e)))$$
 for all $e \in \Sigma$.

- Every twist is a proper map (as in K. Courtney, A. Duwenig, M.C. Georgescu, A. an Huef, and M.G. Viola (2024)).
- If $q: \Sigma \rightarrow G$ is a twist then Σ is locally compact.

Let G be a locally compact Hausdorff étale groupoid and Σ be a twist over G. We say that $f \in C(\Sigma)$ is T-contravariant if

$$f(z \cdot \gamma) = \overline{z} \cdot f(\gamma) \quad \text{for all } \gamma \in \Sigma, z \in \mathbb{T}.$$

Define $C(\Sigma; G) := \{f \in C(\Sigma) : f \text{ is } \mathbb{T}\text{-contravariant}\}$ and let $C_c(\Sigma; G) := C(\Sigma; G) \cap C_c(\Sigma)$. Then $C_c(\Sigma; G)$ is a *-algebra under the operations

$$(f*g)(\gamma):=\sum_{\eta\in q(\gamma)G}f(\sigma(\eta))g(\sigma(\eta)^{-1}\gamma) \quad ext{ and } \quad f^*(\gamma):=\overline{f(\gamma^{-1})},$$

where $\sigma : G \rightarrow \Sigma$ is a section of q. Then the reduced twisted groupoid C*-algebra

$$C_r^*(\Sigma; G) := \overline{C_c(\Sigma; G)}^{\|\cdot\|_r},$$

where $||f||_r := \sup\{||\pi_x(f)|| : x \in G^{(0)}\}$ and $\pi_x : C_c(\Sigma; G) \to B(L^2(G_x; \Sigma_x))$ is the regular rep at $x \in G^{(0)}$. Cartan subalgebras (re-formulated):

Let A be a C*-algebra and B be an abelian subalgebra of A. We say that B is a Cartan subalgebra of A if the following conditions are satisfied:

- B is a maximal abelian subalgebra of A;
- Span(N(B)) = A, where N(B) = {n ∈ A : nB*n ∪ n*Bn ⊆ B}; and
- **③** there exists a faithful conditional expectation $E : A \rightarrow B$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem (Renault 2008, Raad 2022)

Let Σ be a twist over an effective locally compact Hausdorff étale groupoid G. Then $(C_r^*(\Sigma; G), C_0(G^{(0)}))$ is a Cartan pair. Conversely, if (A, B) is a Cartan pair, then there exists a twist $q: \Sigma \to G$, where G is an effective locally compact Hausdorff étale groupoid, such that there is an isomorphism from A to $C_r^*(\Sigma; G)$ that maps B onto $C_0(G^{(0)})$.

白マ・キョン・キョン

Theorem (Renault 2008, Raad 2022)

Let Σ be a twist over an effective locally compact Hausdorff étale groupoid G. Then $(C_r^*(\Sigma; G), C_0(G^{(0)}))$ is a Cartan pair. Conversely, if (A, B) is a Cartan pair, then there exists a twist $q: \Sigma \twoheadrightarrow G$, where G is an effective locally compact Hausdorff étale groupoid, such that there is an isomorphism from A to $C_r^*(\Sigma; G)$ that maps B onto $C_0(G^{(0)})$.

Cartan semigroups

Let A be a C*-algebra and N be a subset of A.

Definition (Bice-Clark-L-McCormick)
We call N ⊆ A a Cartan semigroup if
N is a *-subsemigroup of A with dense span,
B := C*(N₊) is a commutative subsemigroup of N, where N₊ := {n*n : n ∈ N}, and
there is a conditional expectation E : A → B such that E(n)n* ∈ B for all n ∈ N.

In this case, we call B the associated semi-Cartan subalgebra.

< 同 > < 国 > < 国 >

Cartan semigroups

Let A be a C*-algebra and N be a subset of A.

Definition (Bice-Clark-L-McCormick)

We call $N \subseteq A$ a Cartan semigroup if

- N is a *-subsemigroup of A with dense span,
- ② $B := C^*(N_+)$ is a commutative subsemigroup of N, where $N_+ := \{n^*n : n \in N\}$, and
- **③** there is a conditional expectation $E : A \rightarrow B$ such that

 $E(n)n^* \in B$ for all $n \in N$.

In this case, we call B the associated semi-Cartan subalgebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A be a C*-algebra and N be a subset of A.

Definition (Bice-Clark-L-McCormick)

We call $N \subseteq A$ a Cartan semigroup if

- N is a *-subsemigroup of A with dense span,
- ② $B := C^*(N_+)$ is a commutative subsemigroup of N, where $N_+ := \{n^*n : n \in N\}$, and

③ there is a conditional expectation $E : A \rightarrow B$ such that

 $E(n)n^* \in B$ for all $n \in N$.

In this case, we call B the associated semi-Cartan subalgebra.

< 回 > < 回 > < 回 > <

Lemma

- Every semi-Cartan subalgebra B contains an approximate unit for A (following Brown-Fuller-Pitts-Reznikoff '21).
- $\mathbb{C}N = N \subseteq N(B)$.

Fix $(p_k)_k$, a sequence of nonzero polynomials, with zero constant terms that converge to 1 uniformly on all compact subsets of $\mathbb{R} \setminus \{0\}$. Then for any $a \in A$, it follows that

$$p_k(aa^*)a = ap_k(a^*a) \rightarrow a.$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Lemma

- Every semi-Cartan subalgebra B contains an approximate unit for A (following Brown-Fuller-Pitts-Reznikoff '21).
- $\mathbb{C}N = N \subseteq N(B)$.

Fix $(p_k)_k$, a sequence of nonzero polynomials, with zero constant terms that converge to 1 uniformly on all compact subsets of $\mathbb{R} \setminus \{0\}$. Then for any $a \in A$, it follows that

$$p_k(aa^*)a = ap_k(a^*a) \rightarrow a.$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Proposition

Suppose (A, B) satisfies all properties of a Cartan pair except that the expectation E is faithful. Then N(B) forms a Cartan semigroup with associated semi-Cartan subalgebra $B = C^*(N(B)_+)$.

To see that (3) holds: note that, for all $b \in B$ and $n \in N(B)$,

 $E(n)n^*nn^*b = E(n)n^*bnn^* = E(nn^*bn)n^* = E(bnn^*n)n^* = bE(n)n^*nn^*.$

Likewise, $E(n)n^*(nn^*)^k b = bE(n)n^*(nn^*)^k$ for all k > 1, and hence

 $E(n)n^*b = \lim_{k} E(n)n^*p_k(nn^*)b = \lim_{k} bE(n)n^*p_k(nn^*) = bE(n)n^*.$

As B is a MASA, it follows that $E(n)n^* \in B$, showing that N(B) is a Cartan semigroup.

イロト イポト イヨト イヨト

Proposition

Suppose (A, B) satisfies all properties of a Cartan pair except that the expectation E is faithful. Then N(B) forms a Cartan semigroup with associated semi-Cartan subalgebra $B = C^*(N(B)_+)$.

To see that (3) holds: note that, for all $b \in B$ and $n \in N(B)$,

 $E(n)n^*nn^*b = E(n)n^*bnn^* = E(nn^*bn)n^* = E(bnn^*n)n^* = bE(n)n^*nn^*.$

Likewise, $E(n)n^*(nn^*)^k b = bE(n)n^*(nn^*)^k$ for all k > 1, and hence

$$E(n)n^*b = \lim_{k} E(n)n^*p_k(nn^*)b = \lim_{k} bE(n)n^*p_k(nn^*) = bE(n)n^*.$$

As B is a MASA, it follows that $E(n)n^* \in B$, showing that N(B) is a Cartan semigroup.

Take $G = \mathbb{Z}$, recall that $C_r^*(\mathbb{Z}) \cong C(\mathbb{T})$ via Fourier transform. Then $N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}\delta_k$ is a Cartan semigroup with $B := C^*(N_+) = \mathbb{C}1$ and expectation E given by $E(a) = \varphi(a)1$, where φ is any state on $C(\mathbb{T})$ such that $\varphi(\delta_k) = 0$ for all $0 \neq k \in \mathbb{Z}$.

However, \mathbb{Z} is not effective, thus, B is not a MASA (ABCCLMR (2023)).

In general, let A be a C*-algebra and suppose there is a state $\varphi : A \to \mathbb{C}$ and a unitary $u \in A$ generating A such that $\varphi(u^k) = 0$ for all $0 \neq k \in \mathbb{Z}$. $\implies N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}u^k$ is a Cartan semigroup with $B = C^*(N_+) = \mathbb{C}1$ and $E(a) = \varphi(a)1$ for all $a \in A$

We will show that if φ is also faithful then A must be isomorphic to $C_r^*(\mathbb{Z})$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Take $G = \mathbb{Z}$, recall that $C_r^*(\mathbb{Z}) \cong C(\mathbb{T})$ via Fourier transform. Then $N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}\delta_k$ is a Cartan semigroup with $B := C^*(N_+) = \mathbb{C}1$ and expectation E given by $E(a) = \varphi(a)1$, where φ is any state on $C(\mathbb{T})$ such that $\varphi(\delta_k) = 0$ for all $0 \neq k \in \mathbb{Z}$. However, \mathbb{Z} is not effective, thus, B is not a MASA (ABCCLMR (2023)).

In general, let A be a C*-algebra and suppose there is a state $\varphi : A \to \mathbb{C}$ and a unitary $u \in A$ generating A such that $\varphi(u^k) = 0$ for all $0 \neq k \in \mathbb{Z}$. $\implies N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}u^k$ is a Cartan semigroup with $B = C^*(N_+) = \mathbb{C}1$ and $E(a) = \varphi(a)1$ for all $a \in A$.

We will show that if φ is also faithful then A must be isomorphic to $C_r^*(\mathbb{Z})$.

イロト イヨト イヨト

Take $G = \mathbb{Z}$, recall that $C_r^*(\mathbb{Z}) \cong C(\mathbb{T})$ via Fourier transform. Then $N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}\delta_k$ is a Cartan semigroup with $B := C^*(N_+) = \mathbb{C}1$ and expectation E given by $E(a) = \varphi(a)1$, where φ is any state on $C(\mathbb{T})$ such that $\varphi(\delta_k) = 0$ for all $0 \neq k \in \mathbb{Z}$.

However, \mathbb{Z} is not effective, thus, B is not a MASA (ABCCLMR (2023)).

In general, let A be a C*-algebra and suppose there is a state $\varphi : A \to \mathbb{C}$ and a unitary $u \in A$ generating A such that $\varphi(u^k) = 0$ for all $0 \neq k \in \mathbb{Z}$. $\implies N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}u^k$ is a Cartan semigroup with $B = C^*(N_+) = \mathbb{C}1$ and $E(a) = \varphi(a)1$ for all $a \in A$.

We will show that if φ is also faithful then A must be isomorphic to $C_r^*(\mathbb{Z})$.

Take $G = \mathbb{Z}$, recall that $C_r^*(\mathbb{Z}) \cong C(\mathbb{T})$ via Fourier transform. Then $N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}\delta_k$ is a Cartan semigroup with $B := C^*(N_+) = \mathbb{C}1$ and expectation E given by $E(a) = \varphi(a)1$, where φ is any state on $C(\mathbb{T})$ such that $\varphi(\delta_k) = 0$ for all $0 \neq k \in \mathbb{Z}$.

However, \mathbb{Z} is not effective, thus, B is not a MASA (ABCCLMR (2023)).

In general, let A be a C*-algebra and suppose there is a state $\varphi : A \to \mathbb{C}$ and a unitary $u \in A$ generating A such that $\varphi(u^k) = 0$ for all $0 \neq k \in \mathbb{Z}$. $\implies N = \bigcup_{k \in \mathbb{Z}} \mathbb{C}u^k$ is a Cartan semigroup with $B = C^*(N_+) = \mathbb{C}1$ and $E(a) = \varphi(a)1$ for all $a \in A$.

We will show that if φ is also faithful then A must be isomorphic to $C_r^*(\mathbb{Z})$.

イロト 不得 トイヨト イヨト 三日

Theorem (BCLM)

Let A be a C*-algebra containing a Cartan semigroup N with semi-Cartan sublagebra B generated by the positive elements of N, and a stable expectation $E : A \rightarrow B$. Then \exists an isomorphism

 $\Psi: A \twoheadrightarrow C := \operatorname{cl}(C_c(\Sigma; G)), \text{ a twisted groupoid } C^*-algebra.$

If, furthermore, E is faithful then

 $C = \Psi(A) = C_r^*(\Sigma; G).$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Key steps:

(i) Construct groupoid $G = \{U \subseteq N : U \text{ is an ultrafilter}\}$ with topology generated by $(U_n)_{n \in N}$, where

$$\mathcal{U}_n := \{ U \in G : n \in U \}$$
 and $G^{(0)} = \bigcup_{b \in B} \mathcal{U}_b$,

it is Hausdorff and étale.

(ii) For any $U \in G$, whenever $m, n \in U$, define

 $m \sim_U n$ if and only if $\psi_U(E(n^*m)) > 0$,

where $\psi_U := \langle B \setminus s(U) \rangle$. Then \sim_U is an equivalence relation and we define $\Sigma := \{[n]_U : n \in U, U \in G\}$ as a topological space with the subbasis

 $\mathcal{B} = \{\mathcal{E}_n^O : O \subseteq \mathbb{T} \text{ is open and } n \in N\}, \text{ where}$ $\mathcal{E}_n^O = \{[tn]_U : t \in O, U \in \mathcal{U}_n\},$ which proven to be a Hausdorff groupoid with $\Sigma^{(0)} = \{[b]_U : b \in B_+, U \in \mathcal{U}_b\} \text{ and is a twist over } G.$

Key steps:

(i) Construct groupoid $G = \{U \subseteq N : U \text{ is an ultrafilter}\}$ with topology generated by $(U_n)_{n \in N}$, where

$$\mathcal{U}_n := \{ U \in G : n \in U \}$$
 and $G^{(0)} = \bigcup_{b \in B} \mathcal{U}_b$,

it is Hausdorff and étale.

(ii) For any $U \in G$, whenever $m, n \in U$, define

 $m \sim_U n$ if and only if $\psi_U(E(n^*m)) > 0$,

where $\psi_U := \langle B \setminus s(U) \rangle$. Then \sim_U is an equivalence relation and we define $\Sigma := \{[n]_U : n \in U, U \in G\}$ as a topological space with the subbasis

 $\mathcal{B} = \{\mathcal{E}_n^O : O \subseteq \mathbb{T} \text{ is open and } n \in N\}, \text{ where}$ $\mathcal{E}_n^O = \{[tn]_U : t \in O, U \in \mathcal{U}_n\},$ which proven to be a Hausdorff groupoid with $\Sigma^{(0)} = \{[b]_U : b \in B_+, U \in \mathcal{U}_b\} \text{ and is a twist over } \mathcal{G}.$

Key steps:

(i) Construct groupoid $G = \{U \subseteq N : U \text{ is an ultrafilter}\}$ with topology generated by $(U_n)_{n \in N}$, where

$$\mathcal{U}_n := \{ U \in G : n \in U \}$$
 and $G^{(0)} = \bigcup_{b \in B} \mathcal{U}_b,$

it is Hausdorff and étale.

(ii) For any $U \in G$, whenever $m, n \in U$, define

 $m \sim_U n$ if and only if $\psi_U(E(n^*m)) > 0$,

where $\psi_U := \langle B \setminus s(U) \rangle$. Then \sim_U is an equivalence relation and we define $\Sigma := \{[n]_U : n \in U, U \in G\}$ as a topological space with the subbasis

 $\mathcal{B} = \{\mathcal{E}_n^O : O \subseteq \mathbb{T} \text{ is open and } n \in N\}, \text{ where}$ $\mathcal{E}_n^O = \{[tn]_U : t \in O, U \in \mathcal{U}_n\},$ which proven to be a Hausdorff groupoid with $\Sigma^{(0)} = \{[b]_U : b \in B_+, U \in \mathcal{U}_b\} \text{ and is a twist over } G.$

(iii) For any $a \in A$, define

$$\hat{a}([n]_U) := rac{1}{\sqrt{\psi_U(n^*n)}} \psi_U(E(n^*a)), \quad \forall [n]_U \in \Sigma.$$

We get

- $b \in B \mapsto \hat{b} \in \{f \in C_0(\Sigma; G) : q(\operatorname{supp}^o(f)) \subseteq G^{(0)}\}$ is a C*-isomorphism;
- n ∈ N → n̂ ∈ {a ∈ C(Σ; G) : q(supp^o(a)) is a bisection} is a semigroup homomorphism;
- $a \in \operatorname{span}(N) \mapsto \hat{a} \in \operatorname{span}(\{a \in C_0(\Sigma; G) : q(\operatorname{supp}^o(a)) \text{ is a bisection}\})$ is a *-isomorphism; and

• an isomorphism $\Psi : A \rightarrow cl(C_c(\Sigma; G))$ such that $\hat{a} = j \circ \Psi(a)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

(iii) For any $a \in A$, define

$$\hat{a}([n]_U) := rac{1}{\sqrt{\psi_U(n^*n)}} \psi_U(E(n^*a)), \quad \forall [n]_U \in \Sigma.$$

We get

- $b \in B \mapsto \hat{b} \in \{f \in C_0(\Sigma; G) : q(\operatorname{supp}^o(f)) \subseteq G^{(0)}\}$ is a C*-isomorphism;
- n ∈ N → n̂ ∈ {a ∈ C(Σ; G) : q(supp^o(a)) is a bisection} is a semigroup homomorphism;
- $a \in \operatorname{span}(N) \mapsto \hat{a} \in \operatorname{span}(\{a \in C_0(\Sigma; G) : q(\operatorname{supp}^o(a)) \text{ is a bisection}\})$ is a *-isomorphism; and

• an isomorphism $\Psi : A \twoheadrightarrow cl(C_c(\Sigma; G))$ such that $\hat{a} = j \circ \Psi(a)$.

- (同) (回) (回) (回) (回)

THANK YOU!!

Ying-Fen Lin Semi-Cartan subalgebras