Some Generalizations of Cartan Inclusions

David R. Pitts

University of Nebraska-Lincoln

Cartan subalgebras in operator algebras, and topological full groups BIRS Workshop 24w5175 Banff, Alberta November 4, 2024

David R. Pitts Some Generalizations of Cartan Inclusions

・ 同 ト ・ ヨ ト ・ ヨ ト ・

æ

Outline

- A bit of motivation
- Background on Inclusions and their dynamics
- Cartan Inclusions, their groupoid models and other nice properties
- Examples of non-Cartan inclusions
- The generalizations I'll discuss are:
 - Γ-Cartan inclusions (joint with Brown, Fuller, Reznikoff)
 - Weak Cartan Inclusions (joint with Exel)
 - Pseudo-Cartan Inclusions

Some Motivation: W*-Cartan pairs

In 1977, Feldman & Moore defined notion of a Cartan MASA $\mathcal{D} \simeq L^{\infty}(X, \mu)$ in a *W**-algebra $\mathcal{M} \subseteq \mathcal{B}(\ell^2(\mathbb{N}))$ & showed:

a) \exists Borel equiv. relation *R* on *X* with countable equiv. classes & a 2-cocycle σ on *R* s.t.

 $\mathcal{M} \simeq \mathbf{M}(\mathbf{R}, \sigma) \& \mathcal{D} \simeq \mathbf{A}(\mathbf{R}, \sigma),$

where $\mathbf{M}(R, \sigma)$ are "functions on R" & $\mathbf{A}(R, \sigma)$ are the "functions" supported on diag. {(x, x) : $x \in X$ };

b) \exists bijection between (unitary) equivalence classes of such $(\mathcal{M}, \mathcal{D})$ and relations (\mathbf{R}, σ) (up to Borel iso).

Hugely influential: allows \mathcal{M} to be viewed as a "fancy matrix algebra".

Kumjian ('86) & then Renault ('08) sought a C^* -algebraic version.

(a)

Context: Inclusions

Definition

An inclusion is a pair of C^* -algebras $(\mathcal{C}, \mathcal{D})$ with $\mathcal{D} \subseteq \mathcal{C}$ and \mathcal{D} abelian.

In this generality, wild behavior can happen. Here are restrictions which rule out some bad behavior.

Some Non-degeneracy Conditions

- **(** \mathcal{C} , \mathcal{D}) is unital if \mathcal{C} unital & \mathcal{D} contains the unit of \mathcal{C} .
- (C, D) has the approximate unit property (AUP) if D contains an approximate unit for C. (Sometimes called non-degenerate.)
- **(\mathcal{C}, \mathcal{D})** is weakly non-degenerate (WND) if

Ann(
$$\mathbb{C}, \mathbb{D}$$
) := { $c \in \mathbb{C} : dc = cd = 0 \forall d \in \mathbb{D}$ } = {0}.

Easy to see $(1) \Rightarrow (2) \Rightarrow (3)$.

Also: $(\mathcal{C}, \mathcal{D})$ weakly non-deg. $\Rightarrow (\tilde{\mathcal{C}}, \tilde{\mathcal{D}})$ unital.

< 🗆 🕨

(四)、(三)、(三)、

э

Sac

Some Notation

For the inclusion (\mathbb{C} , \mathbb{D}), often write $X = \hat{\mathbb{D}}$ and for $d \in \mathbb{D}$, $x \in X$, $\langle d, x \rangle := \hat{d}(x)$.

David R. Pitts Some Generalizations of Cartan Inclusions

(二)、(四)、(三)、(三)、

Definition

An element $v \in \mathcal{C}$ is a normalizer if $v\mathcal{D}v^* \cup v^*\mathcal{D}v \subseteq \mathcal{D}$; write $\mathcal{N}(\mathcal{C}, \mathcal{D})$ for set of all normalizers.

Facts

1 $\mathcal{N}(\mathcal{C}, \mathcal{D})$ is a *-semigroup.

Also for $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$:

- **2** For all $d \in \mathcal{D}$, $vv^*d = dvv^* \in \mathcal{D}$;
- $\overline{vv^*\mathcal{D}}$ and $\overline{v^*v\mathcal{D}}$ are closed ideals of \mathcal{D} .
- $vv^*d \mapsto v^*dv$ uniquely extends to a *-isomorphism $\theta_v : \overline{vv^*\mathcal{D}} \to \overline{v^*v\mathcal{D}}.$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

JOC

Local Dynamics for Inclusions

Then θ_{v} "dualizes" to a partial homeo β_{v} of X with

dom
$$\beta_{\mathbf{v}} = \{ \mathbf{x} \in \mathbf{X} : \langle \mathbf{v}^* \mathbf{v}, \mathbf{x} \rangle \neq \mathbf{0} \}$$

range $\beta_{\mathbf{v}} = \{ \mathbf{x} \in \mathbf{X} : \langle \mathbf{v} \mathbf{v}^*, \mathbf{x} \rangle \neq \mathbf{0} \}$

(Sometimes write dom v, range v instead of dom β_v , range β_v .)

Have $\mathcal{W} := \{\beta_{\mathbf{v}} : \mathbf{v} \in \mathcal{N}(\mathcal{C}, \mathcal{D})\}$ an inverse semigroup: $\beta_{\mathbf{v}} \circ \beta_{\mathbf{w}} = \beta_{\mathbf{vw}}, \ \beta_{\mathbf{v}}^{-1} = \beta_{\mathbf{v}^*},$ idempotents are $\{\beta_d : d \in \mathcal{D}\}$. This is the *Weyl semigroup*.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

DQC

The Weyl Groupoid (inspired by groupoid of germs for W)

- Let $\mathfrak{Y} := \{ (v, x) : v \in \mathbb{N}(\mathcal{C}, \mathcal{D}), x \in \mathsf{dom} \, \beta_v \}.$
- For two elt's of \mathfrak{Y} , say $(v_1, x_1) \sim (v_2, x_2)$ iff $x_1 = x_2 := x$, $\exists d_i \in \mathfrak{D} \text{ s.t. } \langle d_i, x \rangle \neq 0 \& v_1 d_1 = v_2 d_2.$ (Equiv. pairs $\implies v_2^* v_1 d_1 = v_2^* v_2 d_2 \in \mathfrak{D}$, so germ_x $(\beta_{v_1}) = \text{germ}_x(\beta_{v_2})$)
- Set $G := \mathfrak{Y} / \sim$. Write [v, x] for equiv class of (v, x).

Fact

Define

•
$$[v_1, x_1][v_2, x_2] = [v_1 v_2, x_2]$$
 if $\beta_{v_2}(x_2) = x_1$ &

•
$$[v, x]^{-1} = [v^*, \beta_v(x)].$$

With the topology generated by the sets $\Omega(v, U) := \{[v, x] : x \in U^{open} \subseteq \text{dom } \beta_v\}$, *G* becomes a locally compact étale topological groupoid, with $G^{(0)} = X$, (*G* not necessarily Hausdorff.)

G is the Weyl groupoid of $(\mathcal{C}, \mathcal{D})$.

SAC

Standing Assumption on Groupoids

Assumption

All groupoids G will be locally compact, étale, with G⁽⁰⁾ Hausdorff.

David R. Pitts Some Generalizations of Cartan Inclusions

(a)

э.

The Fell Line Bundle Over G

An Equiv Relation on $\mathbb{C}\times\mathfrak{Y}$

For
$$i = 1, 2$$
, say $(\lambda_1, v_1, x_1) \sim (\lambda_2, v_2, x_2)$ if $x_1 = x_2 =: x$,
 $\exists d_i \in \mathcal{D}$ with $\langle d_i, x \rangle \neq 0$, $v_1 d_1 = v_2 d_2$ & $\frac{\lambda_1}{\langle d_1, x \rangle} = \frac{\lambda_2}{\langle d_2, x \rangle}$.

Put $\mathcal{L} := \{ [\lambda, v, x] \}$ set of equiv classes & set

$$\begin{split} & [\lambda_1, \nu_1, \beta_{\nu_2}(x)] [\lambda_2, \nu_2, x] := [\lambda_1 \lambda_2, \nu_1 \nu_2, x] \quad \text{and} \\ & [\lambda, \nu, x]^* := [\overline{\lambda}, \nu^*, \beta_{\nu}(x)]. \end{split}$$

Topologize with smallest topology making each of the sections, $G \ni [v, x] \mapsto [f(x), v, x], \quad f \in M(\text{dom } v) \text{ continuous.}$

Fact

This makes \mathcal{L} into a Fell line bundle over G.

Can also do this using a suitable *-semigroup $N \subseteq \mathcal{N}(\mathcal{C}, \mathcal{D})$.

Sac

Fell line bundles over *G* are equivalent to central groupoid extensions

$$\mathbb{T} \times G^{(0)} \stackrel{i}{\hookrightarrow} \Sigma \stackrel{q}{\twoheadrightarrow} G$$

Given a Fell line bundle \mathcal{L} over the groupoid *G*, call the pair (\mathcal{L}, G) a twist and sometimes write (Σ, G) instead.

We'll use whichever viewpoint is convenient.

When \mathcal{L} and G arise from an inclusion $(\mathcal{C}, \mathcal{D})$ as above, call (\mathcal{L}, G) (or (Σ, G)) the Weyl twist for $(\mathcal{C}, \mathcal{D})$.

(□) (@) (E) (E)

Can construct: a *-algebra $C_c(\mathcal{L}, G)$ (with a convolution product) of certain continuous compactly supported sections of \mathcal{L} .

 $C_c(\mathcal{L}, G)$ admits various C^* -seminorms, and let $C^*_{\eta}(\mathcal{L}, G)$ be completion of $C_c(\mathcal{L}, G)/N_{\eta}$ under a C^* -seminorm η satisfying

$$\eta|_{C_c(G^{(0)})} = \|\cdot\|_{C_0(G^{(0)})}.$$

Call such a seminorm nice.

Get an inclusion $(C^*_{\eta}(\mathcal{L}, G), C_0(G^{(0)})).$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Given the inclusion $(\mathcal{C}, \mathcal{D})$:

• construct Weyl Twist (\mathcal{L}, G) as above;

• form
$$(C^*_{\eta}(\mathcal{L}, G), C_0(G^{(0)}))$$

HOPE: (\mathcal{C} , \mathcal{D}) and ($C_{\eta}^{*}(\mathcal{L}, G), C_{0}(G^{(0)})$) are closely related, ideally isomorphic.

(a)

э.

It is possible for $\mathcal{N}(\mathcal{C}, \mathcal{D}) = \mathcal{D}$, in which case $G = \hat{\mathcal{D}} = G^{(0)}$, and $\mathcal{L} = \mathbb{C} \times G^{(0)}$ is the trivial line bundle.

So if $\mathcal{N}(\mathcal{C}, \mathcal{D})$ is too small, there's not much hope of using (\mathcal{L}, G) to analyze \mathcal{C} .

Definition

The inclusion $(\mathcal{C}, \mathcal{D})$ is regular when $\overline{\text{span}} \mathcal{N}(\mathcal{C}, \mathcal{D}) = \mathcal{C}$.

Cartan Inclusions

Definition (Renault, following Kumjian & Feldman-Moore)

A regular incl'n $(\mathcal{C}, \mathcal{D})$ is a Cartan pair or a Cartan inclusion if

• \mathcal{D} is a MASA in \mathcal{C} ; and

• \exists faith. cond. expectation $\mathbb{E} : \mathbb{C} \to \mathcal{D}$.

(Regular MASA incl'ns automatically have AUP.) A *C**-diagonal is a Cartan incl'n having unique extension prop.

(Kumjian's original axioms differ.)

Examples

- If $\mathfrak{C} = \mathfrak{D}$ abelian, $\Rightarrow (\mathfrak{D}, \mathfrak{D})$ Cartan.
- $(M_n(\mathbb{C}), \text{Diag}_n(\mathbb{C}))$ (prototype example)
- X loc. compact T₂, Γ a discrete gp. acting top. freely on X. Then (C₀(X) ⋊_r Γ, C₀(X)) a Cartan pair.
- Some graph C*-algebras have Cartan MASAs, e.g. (O_n, C*({w(S)w(S)*})) a Cartan pair.

(日)

Sac

Hope Fufilled for Cartan inclusions

The nicest property of Cartan inclusions is that they're the C^* -version of the W^* -Cartan subalgebras of Feldman-Moore:

Theorem (Renault '08)

.

• Let $(\mathcal{C}, \mathcal{D})$ be Cartan with Weyl twist (\mathcal{L}, G) . Then $(\mathcal{C}, \mathcal{D}) \simeq (C_r^*(\mathcal{L}, G), C_0(G^{(0)}))$

 Suppose G is a Hausdorff, étale, effective groupoid and L a Fell line bundle over G. Then

 $(C^*_r(\mathcal{L},G),C_0(G^{(0)}))$

is a Cartan pair.

Remark: Renault assumed separability of C^* -algebras & 2nd countability for groupoids; those assumptions are unnecessary (Raad '22).

< 回 > < 回 > < 回 >

SAC

Let $(\mathcal{C}, \mathcal{D})$ be Cartan.

- C unital, nuclear, separable ⇒ C has UCT (Barlak-Li)—this is important for classification theory.
- If $N \subseteq \mathcal{N}(\mathcal{C}, \mathcal{D})$ a *-semigp with $\mathcal{D} \subseteq N$ & $\overline{\text{span}}N = \mathcal{C}$, then $\|\cdot\|_{\mathcal{C}}$ is the smallest *C**-norm on span *N* (P).
- If J ≤ C is regular, then (C/J, D/(D ∩ J)) is also Cartan. (Brown-Fuller-P-Reznikoff '24)
- If A_1, A_2 algebras (need not be C^* -algebras) with

$$\mathcal{D}\subseteq \mathcal{A}_i\subseteq \mathfrak{C},$$

any isometric isomorphism $\theta : \mathcal{A}_1 \to \mathcal{A}_2$ uniquely extends to a *-iso $\tilde{\theta} : C^*(\mathcal{A}_1) \to C^*(\mathcal{A}_2)$ (P, following ideas of Donsig-P, & Zarikian).

We now move away from the Cartan setting. First some examples.

イロト 不得 とくほ とくほ とう

Examples (of non-Cartan inclusions)

• Let $\mathcal{C} = C([0,1]) \& \mathcal{D} = \{f \in \mathcal{C} : f(0) = f(1)\} \simeq C(\mathbb{T})$. Then $(\mathcal{C}, \mathcal{D})$ a regular non-MASA incln', and $\not\exists$ conditional expect. of C([0,1]) onto $C(\mathbb{T})$.

2 Let
$$C = C([-1, 1], M_2(C))$$
 and

$$\mathcal{D} = \{ f \in \mathcal{C} : f(t) \in C^*(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}) \text{ for } t < 0, \\ f(t) \in C^*(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}) \text{ for } t > 0 \}$$

Then $(\mathcal{C}, \mathcal{D})$ a reg. MASA incl'n, and $\not\exists \mathbb{E} : \mathcal{C} \to \mathcal{D}$. (Consider $f(t) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for $-1 \le t \le 1$.)

Next we discuss some classes of inclusions $(\mathcal{C}, \mathcal{D})$ where

- \mathcal{D} not a MASA and/or
- there is no conditional expectation.

First we consider a setting where the MASA condition is relaxed, but there is a faithful conditional expectation.

・ 同 ト ・ ヨ ト ・ ヨ ト

C-Cartan Inclusions (with Brown, Fuller & Reznikoff)

Suppose Γ is a discrete abelian group such that $\hat{\Gamma}$ acts (strongly) on the *C*^{*}-algebra \mathcal{A} , with fixed point algebra $\mathcal{A}^{\hat{\Gamma}}$. $\hat{\Gamma} \ni \omega \mapsto \alpha_{\omega} \in \operatorname{Aut}(\mathcal{A}).$

Call $a \in A$ homogeneous of degree $t \in \Gamma$ if $\alpha_{\omega}(a) = \langle \omega, t \rangle a$ for $w \in \hat{\Gamma}$.

Definition (Brown-Fuller-P-Reznikoff '21)

The inclusion $(\mathcal{A}, \mathcal{D})$ is called a Γ -Cartan pair if: (i) $\mathcal{D} \subseteq \mathcal{A}^{\hat{\Gamma}}$, (ii) $(\mathcal{A}, \mathcal{D})$ is regular, & (iii) $(\mathcal{A}^{\hat{\Gamma}}, \mathcal{D})$ is a Cartan pair.

A Non-MASA Example: $\mathbb{T} \curvearrowright C(\mathbb{T})$ (rotation), so $(C(\mathbb{T}), \mathbb{C}I)$ is \mathbb{Z} -Cartan.

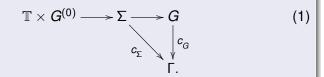
Fact

Let $\mathcal{N}_h(\mathcal{A}, \mathcal{D})$ denote the homogeneous normalizers. Then $\mathcal{N}_h(\mathcal{A}, \mathcal{D})$ is a *-semigroup & span $\mathcal{N}_h(\mathcal{A}, \mathcal{D}) = \mathcal{A}$.

Sac

Theorem (BFPR)

Let (A, D) be Γ-Cartan. The Weyl twist constructed using N_h(A, D) is Hausdorff and ∃ continuous homomorphisms c_Σ : Σ → Γ and c_G : G → Γ and a "graded twist"



- Every graded twist as in (1) yields a Γ-Cartan inclusion (C^{*}_r(Σ, G), C₀(G⁽⁰⁾)).
- If the graded twist (Γ, G) arises from a Γ-Cartan inclusion (A, D), then (A, D) ≃ (C_r(Σ, G), C₀(G⁽⁰⁾)).

SAC

When there is no conditional expectation, the situation can get complicated.

・ロト ・ ア・ ・ ヨト ・ ヨト

Ð.

Theorem (P, maybe others?)

Let (\mathbb{C}, \mathbb{D}) be a (unital) regular MASA inclusion. Then the Weyl groupoid G is Hausdorff if and only if there exists a conditional expectation $E : \mathbb{C} \to \mathbb{D}$.

Moral: For regular MASA inclusions, failure of Cartan due to lack of conditional expectation causes inconvenience: groupoid models are not T_2 .

SAC

Accept it: seek groupoid models for $(\mathcal{C}, \mathcal{D})$ using non-Hausdorff groupoids

Fight it: seek a Cartan inclusion $(\mathcal{A}, \mathcal{B})$ closely related to $(\mathcal{C}, \mathcal{D})$.

Two of the generalizations of Cartan inclusions we'll discuss take these approaches.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Acceptance. Weak Cartan Inclusions (with Exel)

Weak Cartan inclusions: a setting where there are groupoid models with possibly non-Hausdorff groupoids

< ロ > < 同 > < 回 > < 回 > .

Background: Free Points & Smooth Elements

Let $(\mathcal{C}, \mathcal{D})$ be an inclusion, & put $X = \hat{\mathcal{D}}$ (the pure states on \mathcal{D}).

Definitions

- *x* ∈ *X* is free if *x* uniquely extends to a state φ_x on C. Let *F* = {free points}.
- If *F* is dense in *X*, $(\mathcal{C}, \mathcal{D})$ is a topologically free inclusion.

Kumjian's C^* -diagonals have F = X (by hypothesis), & (separable) Cartan inclusions are topologically free.

Definitions

Let $c \in \mathcal{C}$.

- x ∈ X is free relative to c if φ_i (i = 1, 2) are states on C extending x, then φ₁(c) = φ₂(c). Put F_c = {free points relative to c}.
- c is smooth if $int(F_c)$ is dense in X.

FACT: $(\mathcal{C}, \mathcal{D})$ a MASA incl'n \Rightarrow every $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$ is smooth.

SAC

Definition

 $(\mathcal{C}, \mathcal{D})$ is a smooth inclusion if \exists a *-semigroup $N \subseteq \mathcal{N}(\mathcal{C}, \mathcal{D})$ such that: each $v \in N$ is smooth and N is generating i.e. the \mathcal{D} -bimodule generated by N is dense in \mathcal{C} .

Reg. MASA inclusions are smooth: can take $N = \mathcal{N}(\mathcal{C}, \mathcal{D})$.

Theorem

Let $(\mathfrak{C}, \mathfrak{D})$ be a reg. incl'n and put $\mathfrak{G} := \{ c \in \mathfrak{C} : \phi_x(c^*c) = 0 \forall x \in F \}.$ Then \mathfrak{G} is a closed 2-sided ideal in \mathfrak{C} , the grey ideal. In addition, if $(\mathfrak{C}, \mathfrak{D})$ is topologically free, then $\mathfrak{G} \cap \mathfrak{D} = \{ 0 \};$ if $J \subseteq \mathfrak{C}$ an ideal with $J \cap \mathfrak{D} = \{ 0 \}$, then $J \subseteq \mathfrak{G}$.

(二)、

Sac

Definition

The inclusion (\mathbb{C}, \mathbb{D}) is a weak Cartan inclusion if it has the AUP and is a smooth inclusion with vanishing grey ideal.

- The vanishing of & is a replacement for faithfulness of the conditional expectation of Cartan inclusions.
- The examples above are weak Cartan inclusions.

Facts: For an inclusion $(\mathcal{C}, \mathcal{D})$ with AUP,

- weak Cartan ⇒ regular (by def'n) & topologically free.
- smooth + top. free \Rightarrow ($\mathfrak{C}/\mathfrak{G}, \mathfrak{D}$) is weak Cartan.

When C is separable, (C, D) Cartan \implies weak-Cartan (not always true in non-separable case).

< 回 ト < 三 ト < 三 ト

Theorem (Exel-P)

Let $(\mathcal{C}, \mathcal{D})$ be an inclusion, with \mathcal{C} separable.

- Suppose (C, D) is a weak Cartan inclusion & N is a generating *-semigroup of smooth normalizers. Then
 - (a) the Weyl twist (L_N, G_N) satisfies: G_N is 2nd countable & topologically free. ^a
 - (b) There is a nice semi-norm $\|\cdot\|_{ess}$ on $C_c(\mathcal{L}_N, G_N)$ such that $(\mathcal{C}, \mathcal{D}) \simeq (C^*_{ess}(\mathcal{L}_N, G_N), C_0(G^{(0)})).$
- If (\mathcal{L}, G) is a twist as in 1(a), $(C_{ess}^*(\mathcal{L}, G), C_0(G^{(0)}))$ is a weak-Cartan inclusion.

^{*a*} *G* is topologically free if $\{x \in G^{(0)} : \text{isotropy at } x \text{ is trivial}\}$ is dense in $G^{(0)}$.

< 回 > < 回 > < 回 >

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Fight. Pseudo-Cartan Inclusions

We start by reframing Cartan inclusions.

David R. Pitts Some Generalizations of Cartan Inclusions

・ロット (雪) () () () ()

Equivalent Description of Cartan Inclusions

Let $\mathcal{B} \subseteq \mathcal{A}$ be C^* -algebras. Use

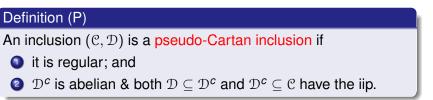
 $\mathcal{B}^{c} := \mathcal{A} \cap \mathcal{B}'$ (relative commutant).

Also, say $\mathcal{B} \subseteq \mathcal{A}$ has the ideal intersection property (iip) if $J \trianglelefteq \mathcal{A} \& J \cap \mathcal{B} = \{0\} \Longrightarrow J = \{0\}.$

Standard Axioms	Alternate Axioms
regular	regular
MASA	\mathbb{D}^{c} abelian & iip for
	iip
	$\mathfrak{D}\subseteq\widetilde{\mathfrak{D}^{c}\subseteq\mathfrak{C}}$
	iip
\exists faithful cond. expect $E : \mathcal{C} \to \mathcal{D}$	\exists cond. expect $\boldsymbol{E} : \mathfrak{C} \to \mathfrak{D}$

Fact [P '21]: The incl'n $(\mathcal{C}, \mathcal{D})$ is Cartan iff either set of axioms hold.

Large families of non-Cartan regular inclusions arise if we omit the last of the alternate axioms.



- While Cartan inclusions have the AUP, a pseudo-Cartan inclusion may not.
- However, every pseudo-Cartan inclusion is weakly non-degenerate.

< 回 > < 三 > < 三 > 、

Examples of Pseudo-Cartan Inclusions

Examples

- Every Cartan inclusion is a pseudo-Cartan inclusion.
- ② Every virtual Cartan inclusion, i.e. a reg. MASA inclusion with iip for D ⊆ C, is a pseudo-Cartan. (Introduced by P ('17), further studied by Taylor ('23) under name "essential Cartan inclusion".)
- Severy weak-Cartan inclusion is a pseudo-Cartan inclusion.
- The regular non-Cartan examples given above are all pseudo-Cartan inclusions.
- If *X*, *Y* loc. compact Hausdorff & $C_0(X) \subseteq C_0(Y)$ has the ideal intersection property, then $(C_0(Y), C_0(X))$ is pseudo-Cartan.

In particular, $(C_b(X), C_0(X))$ is a pseudo-Cartan without AUP.

(二)、(四)、(三)、(三)、

3

SAC

Approach: Try to embed a reg. incl'n into a Cartan inclusion.

Definition

- Let $({\mathfrak C},{\mathfrak D})$ be an inclusion.
 - An expansion of $(\mathcal{C}, \mathcal{D})$ is a triple $(\mathcal{A}, \mathcal{B} : \alpha)$ with $(\mathcal{A}, \mathcal{B})$ an incl'n & $\alpha : \mathcal{C} \to \mathcal{A}$ a *-monomorphism satisfying $\alpha(\mathcal{D}) \subseteq \mathcal{B}$.

② Call (A, B : α) a regular expansion if α : C → A is a regular map, i.e. α(N(C, D)) ⊆ N(A, B).

SAC

// → < ≥ > < ≥ >

Embedding Theorem (P. 2012)

For a unital regular inclusion $(\mathcal{C}, \mathcal{D})$, TFAE

- (C, D) has a regular expansion (A, B : α) with (A, B) Cartan;
- (C, D) has a regular expansion (A, B : α) with (A, B) a C*-diagonal;
- **3** *a certain ideal,* $Rad(\mathcal{C}, \mathcal{D}) \leq \mathcal{C}$ *, vanishes.*

A compatible state for $(\mathcal{C}, \mathcal{D})$ is a state with $|\rho(v)|^2 \in \{0, \rho(v^*v)\} \forall v \in \mathcal{N}(\mathcal{C}, \mathcal{D})\}$ & $Rad(\mathcal{C}, \mathcal{D}) := \{x \in \mathcal{C} : \rho(x^*x) = 0 \forall \text{ compatible states}\}.$

(日)

Jac.

э.

While the embedding theorem is pleasant, there are problems:

- there may be many unrelated Cartan inclusions into which (C, D) regularly embeds;
- the Cartan inclusion constructed by the theorem may have little to do with the original incl'n.

(個))
(目))
(目))
(日))
(H))

Desirable types of expansions

The expansion $(\mathcal{A}, \mathcal{B} : \alpha)$ is

- a Cartan expansion if (A, B) Cartan.
- a package if it is regular and \exists faithful cond. expectation $\Delta : \mathcal{A} \to \mathcal{B}$ & image of $(\mathcal{C}, \mathcal{D})$ generates $(\mathcal{A}, \mathcal{B})$, i.e. $\mathcal{B} = C^*(\Delta(\alpha(\mathcal{C})))$ and $\mathcal{A} = C^*(\alpha(\mathcal{C}), \mathcal{B})$

(we're not assuming (A, B) is Cartan here);

- an envelope if it is a package & α(D) ⊆ B has the ideal intersection property;
- a Cartan envelope if an envelope & Cartan.

Let $(\mathfrak{C}, \mathfrak{D})$ be a regular inclusion and suppose $(\mathcal{A}, \mathcal{B} : \alpha)$ is a Cartan envelope for $(\mathfrak{C}, \mathfrak{D})$.

Facts

- C is simple if and only if A is simple.
- \mathcal{C} is separable if and only if \mathcal{A} is separable.

It would be nice to know about nuclearity:

Conjecture

 ${\mathfrak C}$ is nuclear if and only if ${\mathcal A}$ is nuclear.

< 回 > < 回 > < 回 >

Sac

Next goal: Characterize the regular inclusions having a Cartan envelope.

・ロト ・ ア・ ・ ヨト ・ ヨト

э.

Injective Envelopes for Abelian C*-algebras

Recall: For any C^* -algebra \mathcal{A} :

• the local multiplier algebra is

$$M_{loc}(\mathcal{A}) = \varinjlim_{\substack{J \subseteq \mathcal{A}, \ J ext{ essential}}} M(J),$$

where ideals are partially ordered by reverse inclusion.

Since $\mathcal{A} \trianglelefteq \mathcal{A}$, get $\mathcal{A} \subseteq M_{loc}(\mathcal{A})$.

When A is abelian, M_{loc}(A) is the injective envelope for A (Frank-Paulsen). Also, A ⊆ M_{loc}(A) has iip.

For \mathcal{A} abelian, write $I(\mathcal{A})$ instead of $M_{loc}(\mathcal{A})$, and use $\iota : \mathcal{A} \to I(\mathcal{A})$ for the inclusion map.

(□) (@) (E) (E)

We saw examples of reg. inclusions with no cond. expectation. Replacement: Pseudo-expectations.

Definition

A pseudo-expectation for the inclusion $(\mathcal{C}, \mathcal{D})$ is a contractive completely positive linear map $E : \mathcal{C} \to I(\mathcal{D})$ with $E|_{\mathcal{D}} = \iota$.

Let $PsE(\mathcal{C}, \mathcal{D})$ be the set of all pseudo-expectations for $(\mathcal{C}, \mathcal{D})$. Since $I(\mathcal{D})$ injective, pseudo-expectations always exist.

SAC

Usually $PsE(\mathcal{C}, \mathcal{D})$ is large: when \mathcal{C} unital, $PsE(\mathcal{C}, \mathbb{C}I) = \mathcal{S}(\mathcal{C})$.

Definition

Let $(\mathfrak{C}, \mathfrak{D})$ be an inclusion.

- (C, D) has the unique pseudo-expectation property (!PsE) if PsE(C, D) is a singleton set.
- If (C, D) has !PsE and the Ps.E. is faithful, it has the faithful unique pseudo-expectation property (f!PsE).

Theorem (P)

Every regular MASA inclusion has !PsE.

Examples show the pseudo-expectation for a regular MASA inclusion need not be faithful.

Characterization of Reg. Incln's with Cartan Envelopes

Theorem

For a regular inclusion $(\mathcal{C}, \mathcal{D})$, TFAE

- **(\mathfrak{C}, \mathfrak{D})** has a Cartan envelope;
- **2** $(\mathfrak{C}, \mathfrak{D})$ is a pseudo-Cartan inclusion.
- ③ (C, D) has f!PsE;

When any of (1)–(3) hold, have:

Uniqueness If for $i = 1, 2, (A_i, B_i : \alpha_i)$ are Cartan envelopes for (\mathcal{C}, \mathcal{D}), $\exists ! *$ -isomorph $\psi : (A_1, B_1) \to (A_2, B_2)$ s.t. $\psi \circ \alpha_1 = \alpha_2$.

Minimality If $(\mathcal{A}, \mathcal{B} : \alpha)$ is a Cartan pkg for $(\mathcal{C}, \mathcal{D})$, \exists ideal $J \leq \mathcal{A}$ s.t. $J \cap \alpha(\mathcal{C}) = \{0\}$ and $(\mathcal{A}/J, \mathcal{B}/(J \cap \mathcal{B}) : q \circ \alpha)$ is a Cartan env. for $(\mathcal{C}, \mathcal{D})$; (q is quot. map).

<ロ> <同> <同> < 同> < 三> < 三>

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Cartan Envelopes for (the regular) Examples Above

- For (C([0, 1]), C(T)), Cartan env. is (C([0, 1]), C([0, 1]) : inclusion map).
- **2** The Cartan envelope for $\mathcal{C} = C([-1, 1]), M_2(\mathbb{C}))$ and

$$\mathcal{D} = \{ f \in \mathcal{C} : f(t) \in C^*(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}) \text{ for } t < 0, \\ f(t) \in C^*(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}) \text{ for } t > 0 \}$$

is $(\mathcal{A}, \mathcal{B} : \alpha)$ where:

$$\begin{aligned} \mathcal{A} &= C([-1,0], M_2) \oplus C([0,1], M_2) \\ \mathcal{B} &= C([-1,0], C^*(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})) \oplus C([0,1], C^*(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix})) \\ \alpha(f) &= f|_{[-1,0]} \oplus f|_{[0,1]} \quad (f \in \mathcal{C}). \end{aligned}$$

Building Pseudo-Cartan Incl'ns from a Cartan Incl'n

Let $(\mathcal{A}, \mathcal{B})$ be Cartan with cond. exp. $\Delta : \mathcal{A} \to \mathcal{B}$. Suppose

- $\mathcal{D} \subseteq \mathcal{B}$ has the iip; and
- $\mathcal{C} := \overline{\operatorname{span}} \mathcal{N}(\mathcal{A}, \mathcal{D})$. (C can be smaller than \mathcal{A} .)

Theorem

 $({\mathfrak C},{\mathfrak D})$ is a pseudo-Cartan inclusion. Also, if

$$\mathfrak{B}' = \mathcal{C}^*(\Delta(\mathfrak{C}))$$
 and $\mathcal{A}' := \mathcal{C}^*(\mathfrak{B}' \cup \mathfrak{C})),$

then $(\mathcal{A}', \mathcal{B}' :\subseteq)$ is a Cartan envelope for $(\mathcal{C}, \mathcal{D})$.

Remarks:

- $\mathcal{N}(\mathcal{A}, \mathcal{D})$ may have little relationship to $\mathcal{N}(\mathcal{A}, \mathcal{B})$;
- $\mathcal{B}' \subseteq \mathcal{B}$, and may be a proper inclusion.

By the embedding theorem, every unital pseudo-Cartan inclusion regularly embeds into a C^* -diagonal. Not all Cartan inclusions are C^* -diagonals, so we ask:

Question 1

Given a pseudo-Cartan inclusion $(\mathcal{C}, \mathcal{D})$ with Cartan envelope $(\mathcal{A}, \mathcal{B} : \alpha)$, when must $(\mathcal{A}, \mathcal{B})$ be a *C*^{*}-diagonal (and not just Cartan)?

There's been recent interest in finding Cartan MASAs in C^* -algebras.

Question 2

Suppose $(\mathcal{C}, \mathcal{D})$ is pseudo-Cartan. Must \mathcal{C} contain a Cartan MASA? If so, is there a construction?

SAC

A Groupoid Description for the Cartan Envelope

Suppose $(\mathcal{C}, \mathcal{D})$ is a pseudo-Cartan inclusion and let $(\mathcal{A}, \mathcal{B} : \alpha)$ be a Cartan envelope for $(\mathcal{C}, \mathcal{D})$.

Goal

Describe the central extension

$$\mathbb{T} \times G^{(0)} \hookrightarrow \Sigma \twoheadrightarrow G$$

associated to (A, B) in terms of data coming as directly from (\mathcal{C}, D) as possible.

Idea: Follow Kumjian's approach to the twist for C^* -diagonals, using the pseudo-expectation instead of the (possibly non-existant) conditional expectation.

< 回 > < 回 > < 回 >

Let $E : \mathcal{C} \to I(\mathcal{D})$ be the pseudo-expectation.

The functionals

$$\{\sigma \circ \boldsymbol{E} : \sigma \in \widehat{\boldsymbol{I}(\mathcal{D})}\}$$

form the unit space, $G^{(0)} \simeq \Sigma^{(0)}$.

② For $v \in \mathbb{N}(\mathbb{C}, \mathbb{D})$, $f \in G^{(0)}$, such that $f(v^*v) \neq 0$,& $c \in \mathbb{C}$, put

$$[v, f](c) := \frac{f(v^*c)}{f(v^*v)^{1/2}}$$

and let

 $\Sigma := \{ [v, f] : v \in \mathcal{N}(\mathcal{C}, \mathcal{D}), f \in G^{(0)}, f(v^*v) \neq 0 \} \subseteq \mathcal{C}^{\#}.$ $G = \{ |\phi| : \phi \in \Sigma \}$

Equip with topology of pointwise convergence. Get twist

$$\mathbb{T}\times G^{(0)}\stackrel{i}{\hookrightarrow}\Sigma\stackrel{q}{\twoheadrightarrow}G.$$

Note: *G* is Hausdorff.

Theorem

Suppose $(\mathcal{C}, \mathcal{D})$ is a pseudo-Cartan inclusion. As above, form central extension

$$\mathbb{T} \times G^{(0)} \hookrightarrow \Sigma \twoheadrightarrow G.$$

Define a "Gelfand" map, $\mathfrak{g} : \mathfrak{C} \to C(\Sigma)$ by

$$\mathfrak{g}(c)(\phi) := \phi(c) \quad c \in \mathfrak{C}, \phi \in \Sigma.$$

Let $\mathcal{C}_c := \{c \in \mathcal{C} : \operatorname{supp}(\mathfrak{g}(c)) \text{ is compact}\}\ (a \text{ dense }*\text{-subalg}).$ Then $\mathfrak{g}|_{\mathcal{C}_c} : \mathcal{C}_c \to C_c(\Sigma)$ is a $*\text{-monomorphism which extends to uniquely to a <math>*\text{-monomorphism}$

$$\alpha: \mathfrak{C} \to C^*_r(\Sigma, G)$$

and $(C_r^*(\Sigma, G), C_0(G^{(0)}) : \alpha)$ is a Cartan envelope for $(\mathcal{C}, \mathcal{D})$.

< 回 > < 回 > < 回 >

Suppose: *G* is a 2nd-countable, topologically free, not-necessarily Hausdorff groupoid.

- Given a Fell line bundle *L* over *G*, form the weak-Cartan inclusion (*C*^{*}_{ess}(*L*, *G*), *C*₀(*G*⁽⁰⁾)). This is a pseudo-Cartan inclusion.
- Let (A, B : α) be a Cartan envelope for (C^{*}_{ess}(L, G), C₀(G⁽⁰⁾)). Let (L_A, G_A) be the Weyl twist for the Cartan inclusion (A, B).

Question 3

What, if any, is the relationship between (\mathcal{L}, G) and $(\mathcal{L}_{\mathcal{A}}, G_{\mathcal{A}})$? Does $G_{\mathcal{A}}$ depend on the choice of \mathcal{L} ?

▲□▶▲圖▶▲콜▶▲콜▶

THANK YOU!

David R. Pitts Some Generalizations of Cartan Inclusions

<□> <□> <□> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>