Cartan subalgebras from the von Neumann algebra point-of-view

Sven Raum

University of Potsdam

Workshop "Cartan subalgebras in operator algebras, and topological full groups"

> Banff International Research Station 5 November 2024

[Cartan subalgebras and equivalence relations](#page-2-0)

[Problems about vN algebraic Cartan subalgebras](#page-25-0)

[Problems solved with vN algebraic Cartan subalgebras](#page-47-0)

[Open problems about vN algebraic Cartan subalgebras](#page-52-0)

Definition

A von Neumann algebra is a *-subalgebra $M \subseteq \mathcal{B}(H)$ satisfying $M'' = M$, where H is a complex Hilbert space.

Here $S' = \{a \in \mathcal{B}(H) \mid \forall b \in S : ab = ba\}$ is the commutant.

Definition

A von Neumann algebra is a *-subalgebra $M \subseteq \mathcal{B}(H)$ satisfying $M'' = M$, where H is a complex Hilbert space.

Here $S' = \{a \in \mathcal{B}(H) \mid \forall b \in S : ab = ba\}$ is the commutant. Abelian von Neumann algebras: $\mathrm{L}^\infty(X) \subseteq \mathcal{B}(\mathrm{L}^2(X,\mu)).$

Definition

A von Neumann algebra is a *-subalgebra $M \subseteq \mathcal{B}(H)$ satisfying $M'' = M$, where H is a complex Hilbert space.

Here $S' = \{a \in \mathcal{B}(H) \mid \forall b \in S : ab = ba\}$ is the commutant.

Abelian von Neumann algebras: $\mathrm{L}^\infty(X) \subseteq \mathcal{B}(\mathrm{L}^2(X,\mu)).$

Every von Neumann algebra *M* is a direct integral $\int_X^{\oplus} M_x dx$ where $\mathord{\text{\rm L}}^\infty(X) \cong \mathcal{Z}(\mathcal{M}).$ This reduces the theory to factors: $\mathcal{Z}(\mathcal{M}) = \mathbb{C}$ 1.

Definition

A von Neumann algebra is a *-subalgebra $M \subseteq \mathcal{B}(H)$ satisfying $M'' = M$, where H is a complex Hilbert space.

Here $S' = \{a \in \mathcal{B}(H) \mid \forall b \in S : ab = ba\}$ is the commutant.

Abelian von Neumann algebras: $\mathrm{L}^\infty(X) \subseteq \mathcal{B}(\mathrm{L}^2(X,\mu)).$

Every von Neumann algebra *M* is a direct integral $\int_X^{\oplus} M_x dx$ where $\mathord{\text{\rm L}}^\infty(X) \cong \mathcal{Z}(\mathcal{M}).$ This reduces the theory to factors: $\mathcal{Z}(\mathcal{M}) = \mathbb{C}$ 1.

Type classification separates factors in those of type I, II_1 , II_{∞} , III.

Definition

A von Neumann algebra is a *-subalgebra $M \subseteq \mathcal{B}(H)$ satisfying $M'' = M$, where H is a complex Hilbert space.

Here $S' = \{a \in \mathcal{B}(H) \mid \forall b \in S : ab = ba\}$ is the commutant.

Abelian von Neumann algebras: $\mathrm{L}^\infty(X) \subseteq \mathcal{B}(\mathrm{L}^2(X,\mu)).$

Every von Neumann algebra *M* is a direct integral $\int_X^{\oplus} M_x dx$ where $\mathord{\text{\rm L}}^\infty(X) \cong \mathcal{Z}(\mathcal{M}).$ This reduces the theory to factors: $\mathcal{Z}(\mathcal{M}) = \mathbb{C}$ 1.

Type classification separates factors in those of type I, II_1 , II_{∞} , III.

Modular theory reduces (many) considerations to type II_1 factors.

Definition

A von Neumann algebra is a *-subalgebra $M \subseteq \mathcal{B}(H)$ satisfying $M'' = M$, where H is a complex Hilbert space.

Here $S' = \{a \in \mathcal{B}(H) \mid \forall b \in S : ab = ba\}$ is the commutant.

Abelian von Neumann algebras: $\mathrm{L}^\infty(X) \subseteq \mathcal{B}(\mathrm{L}^2(X,\mu)).$

Every von Neumann algebra *M* is a direct integral $\int_X^{\oplus} M_x dx$ where $\mathord{\text{\rm L}}^\infty(X) \cong \mathcal{Z}(\mathcal{M}).$ This reduces the theory to factors: $\mathcal{Z}(\mathcal{M}) = \mathbb{C}$ 1.

Type classification separates factors in those of type I, II_1 , II_{∞} , III.

Modular theory reduces (many) considerations to type II_1 factors.

Definition

A II_1 factor is an infinite dimensional factor admitting a non-zero tracial state.

Cartan subalgebras in von Neumann algebras

Definition

A Cartan subalgebra of a von Neumann algebra M is a maximal abelian self-adjoint subalgebra $A \subseteq M$ with a normal, faithful, conditional expectation E : $\mathcal{M} \rightarrow A$ such that $\mathcal{M} = \mathcal{N}_{\mathcal{M}}(A)''$ where $\mathcal{N}_{M}(A) = \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ is the unitary normaliser.

Cartan subalgebras in von Neumann algebras

Definition

A Cartan subalgebra of a von Neumann algebra M is a maximal abelian self-adjoint subalgebra $A \subseteq M$ with a normal, faithful, conditional expectation E : $\mathcal{M} \rightarrow A$ such that $\mathcal{M} = \mathcal{N}_{\mathcal{M}}(A)''$ where $\mathcal{N}_{M}(A) = \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ is the unitary normaliser.

For type II_1 von Neumann algebras the existence of a conditional expectation is automatic.

For all other types it ensures compatibility with modular theory, reducing problems to the type II_1 case.

Cartan subalgebras in von Neumann algebras

Definition

A Cartan subalgebra of a von Neumann algebra M is a maximal abelian self-adjoint subalgebra $A \subseteq M$ with a normal, faithful, conditional expectation E : $\mathcal{M} \rightarrow A$ such that $\mathcal{M} = \mathcal{N}_{\mathcal{M}}(A)''$ where $\mathcal{N}_{M}(A) = \{u \in \mathcal{U}(M) \mid uAu^* = A\}$ is the unitary normaliser.

For type II_1 von Neumann algebras the existence of a conditional expectation is automatic.

For all other types it ensures compatibility with modular theory, reducing problems to the type II_1 case.

Alternatives to the unitary normaliser:

- ' the partial normaliser consisting of partial isometries normalising A, and
- ' the stable normaliser of all elements normalising A.

Examples from the group-measure space construction

The main class of examples of Cartan subalgebras comes from Murray-von Neumann's group-measure space construction.

Examples from the group-measure space construction

The main class of examples of Cartan subalgebras comes from Murray-von Neumann's group-measure space construction.

Given a discrete group Γ acting non-singularly on a measurable space $(X,[\mu]),$ the group-measure space construction $\mathrm{L}^\infty(X)\rtimes \mathsf{\Gamma}$ is the (up to isomorphism) unique von Neumann algebra M which

- is generated by a copy of $L^{\infty}(X) \subseteq M$ together with
- a multiplicative family of unitaries $(u_g)_{g \in \Gamma}$ satisfying $u_gf u_g^* = *§*f$ for all $g ∈ Γ, f ∈ L[∞](X)$, and
- there is a normal conditional expectation $E: M \longrightarrow A$ such that $E(u_g) = \delta_{g,g}$ for all $g \in \Gamma$.

Examples from the group-measure space construction

The main class of examples of Cartan subalgebras comes from Murray-von Neumann's group-measure space construction.

Given a discrete group Γ acting non-singularly on a measurable space $(X,[\mu]),$ the group-measure space construction $\mathrm{L}^\infty(X)\rtimes \mathsf{\Gamma}$ is the (up to isomorphism) unique von Neumann algebra M which

- is generated by a copy of $L^{\infty}(X) \subseteq M$ together with
- a multiplicative family of unitaries $(u_g)_{g \in \Gamma}$ satisfying $u_gf u_g^* = *§*f$ for all $g ∈ Γ, f ∈ L[∞](X)$, and
- there is a normal conditional expectation $E: M \longrightarrow A$ such that $E(u_g) = \delta_{g,g}$ for all $g \in \Gamma$.

Given a free, ergodic action $\Gamma \sim X$, we obtain a Cartan subalgebra $\mathrm{L}^\infty(X)\subseteq\mathrm{L}^\infty(X)\rtimes\mathsf{\Gamma}.$ It is of type II_1 if and only if the action is pmp.

Type II_1 equivalence relations

Definition

A type II₁ equivalence relation is an equivalence relation $\mathcal{R} \subseteq X \times X$ for a standard probability measure space (X, μ) such that

- R is a measurable subset of $X \times X$,
- orbits of R are countable.
- every partial automorphism of X whose graph lies in $\mathcal R$ is probability measure preserving
- \bullet R is ergodic, that is R-saturated subsets are null or conull in X.

Type II_1 equivalence relations

Definition

A type II₁ equivalence relation is an equivalence relation $\mathcal{R} \subseteq X \times X$ for a standard probability measure space (X, μ) such that

- R is a measurable subset of $X \times X$,
- orbits of R are countable.
- every partial automorphism of X whose graph lies in $\mathcal R$ is probability measure preserving
- \bullet R is ergodic, that is R-saturated subsets are null or conull in X.

Simplifications occur compared to the topological setup.

Type II_1 equivalence relations

Definition

A type II₁ equivalence relation is an equivalence relation $\mathcal{R} \subseteq X \times X$ for a standard probability measure space (X, μ) such that

- $\mathcal R$ is a measurable subset of $X \times X$,
- orbits of R are countable.
- every partial automorphism of X whose graph lies in $\mathcal R$ is probability measure preserving
- \bullet R is ergodic, that is R-saturated subsets are null or conull in X.

Simplifications occur compared to the topological setup.

Countability assumption imposed for measure theoretic reasons.

Like for Cartan subalgebras, examples of II_1 equivalence relations arise form group actions.

Like for Cartan subalgebras, examples of II_1 equivalence relations arise form group actions.

If $\Gamma \sim X$ is any ergodic pmp action, then

$$
\mathcal{R}(\Gamma \curvearrowright X) = \{(x, gx) \mid x \in X, g \in \Gamma\}
$$

is a II_1 equivalence relation.

Like for Cartan subalgebras, examples of II_1 equivalence relations arise form group actions.

If $\Gamma \sim X$ is any ergodic pmp action, then

$$
\mathcal{R}(\Gamma \curvearrowright X) = \{(x, gx) \mid x \in X, g \in \Gamma\}
$$

is a II_1 equivalence relation.

In fact, every II_1 equivalence relation is of this form by a result of Feldman-Moore.

Like for Cartan subalgebras, examples of II_1 equivalence relations arise form group actions.

If $\Gamma \sim X$ is any ergodic pmp action, then

$$
\mathcal{R}(\Gamma \curvearrowright X) = \{(x, gx) \mid x \in X, g \in \Gamma\}
$$

is a II_1 equivalence relation.

In fact, every II_1 equivalence relation is of this form by a result of Feldman-Moore.

The topological analogue is the effective quotient of a transformation groupoid.

Let R be a II₁ equivalence relation on X. Then $L(\mathcal{R})$ is the unique von Neumann algebra M which

- is generated by a copy of $L^{\infty}(X) \subseteq M$ together with
- a multiplicative family of partial isometries $(u_{\varphi})_{\varphi \in [[\mathcal{R}]]}$ satisfying $u_\varphi f = {}^\varphi f u_\varphi$ for all $\varphi \in [[\mathcal{R}]]$ and all $f \in \widetilde{\mathrm{L}}^\infty(X),$ and
- there is a normal conditional expectation E: $M \longrightarrow L^{\infty}(X)$ satisfying $\mathrm{E}(\mathit{u}_\varphi) = \mathbb{1}_{\mathrm{Fix}(\varphi)}$.

Let R be a II₁ equivalence relation on X. Then $L(\mathcal{R})$ is the unique von Neumann algebra M which

- is generated by a copy of $L^{\infty}(X) \subseteq M$ together with
- a multiplicative family of partial isometries $(u_{\varphi})_{\varphi \in [[\mathcal{R}]]}$ satisfying $u_\varphi f = {}^\varphi f u_\varphi$ for all $\varphi \in [[\mathcal{R}]]$ and all $f \in \widetilde{\mathrm{L}}^\infty(X),$ and
- there is a normal conditional expectation E: $M \longrightarrow L^{\infty}(X)$ satisfying $\mathrm{E}(\mathit{u}_\varphi) = \mathbb{1}_{\mathrm{Fix}(\varphi)}$.

 $\mathrm{L}^\infty(X) \subseteq \mathrm{L}(\mathcal{R})$ is a Cartan subalgebra.

Let R be a II₁ equivalence relation on X. Then $L(\mathcal{R})$ is the unique von Neumann algebra M which

- is generated by a copy of $L^{\infty}(X) \subseteq M$ together with
- a multiplicative family of partial isometries $(u_{\varphi})_{\varphi \in [[\mathcal{R}]]}$ satisfying $u_\varphi f = {}^\varphi f u_\varphi$ for all $\varphi \in [[\mathcal{R}]]$ and all $f \in \widetilde{\mathrm{L}}^\infty(X),$ and
- there is a normal conditional expectation E: $M \longrightarrow L^{\infty}(X)$ satisfying $\mathrm{E}(\mathit{u}_\varphi) = \mathbb{1}_{\mathrm{Fix}(\varphi)}$.

 $\mathrm{L}^\infty(X) \subseteq \mathrm{L}(\mathcal{R})$ is a Cartan subalgebra.

This construction can be made to accommodate a 2-cocycle $\sigma\in\text{Z}^2(\mathcal R,\text{S}^1)$ giving rise to a Cartan subalgebra $\text{L}^\infty(X)\subseteq \text{L}(\mathcal R,\sigma).$

Let R be a II₁ equivalence relation on X. Then $L(\mathcal{R})$ is the unique von Neumann algebra M which

- is generated by a copy of $L^{\infty}(X) \subseteq M$ together with
- a multiplicative family of partial isometries $(u_{\varphi})_{\varphi \in [[\mathcal{R}]]}$ satisfying $u_\varphi f = {}^\varphi f u_\varphi$ for all $\varphi \in [[\mathcal{R}]]$ and all $f \in \widetilde{\mathrm{L}}^\infty(X),$ and
- there is a normal conditional expectation E: $M \longrightarrow L^{\infty}(X)$ satisfying $\mathrm{E}(\mathit{u}_\varphi) = \mathbb{1}_{\mathrm{Fix}(\varphi)}$.

$\mathrm{L}^\infty(X) \subseteq \mathrm{L}(\mathcal{R})$ is a Cartan subalgebra.

This construction can be made to accommodate a 2-cocycle $\sigma\in\text{Z}^2(\mathcal R,\text{S}^1)$ giving rise to a Cartan subalgebra $\text{L}^\infty(X)\subseteq \text{L}(\mathcal R,\sigma).$

Theorem (Feldman-Moore 1977)

Every Cartan subalgebra of a II_1 factor arises from a unique II_1 -equivalence relation with a 2-cocycle.

Most problems about von Neumann algebraic Cartan subalgberas concern their classification.

Most problems about von Neumann algebraic Cartan subalgberas concern their classification.

Theorem (Dye 1959, Feldman-Moore 1977)

There is a unique hyperfinite II_1 equivalence relation.

Most problems about von Neumann algebraic Cartan subalgberas concern their classification.

Theorem (Dye 1959, Feldman-Moore 1977) There is a unique hyperfinite II_1 equivalence relation.

Theorem (Connes-Feldman-Weiss 1981)

Every amenable II_1 equivalence relation is hyperfinite.

Most problems about von Neumann algebraic Cartan subalgberas concern their classification.

Theorem (Dye 1959, Feldman-Moore 1977) There is a unique hyperfinite II_1 equivalence relation.

Theorem (Connes-Feldman-Weiss 1981)

Every amenable II_1 equivalence relation is hyperfinite.

Corollary

The hyperfinite II_1 factor has a unique Cartan subalgebra up to conjugacy by an automorphism.

Unitary conjugacy of Cartan subalgebras

Despite the clean result in the amenable case, classification of Cartan subalgebras up to conjugacy by an automorphism is not the right notion in general.

Unitary conjugacy of Cartan subalgebras

Despite the clean result in the amenable case, classification of Cartan subalgebras up to conjugacy by an automorphism is not the right notion in general.

Theorem (Speelman-Vaes 2012)

Let M be a separable II_1 factor. Then the set of Cartan subalgebras of M is a standard Borel space with the Effros Borel structure and the equivalence relation of unitary conjugacy is Borel.

Theorem (Speelman-Vaes 2012)

There is a separable II_1 factor M such that the space of Cartan subalgebras of M with the equivalence relation of being conjugate by an automorphism is complete analytic.

Popa's intertwining-by-bimodules

Theorem (Popa 2006)

Let M be a II_1 factor and A, $B \subseteq M$ two Cartan subalgebras. Then A and B are unitarily conjugate if and only if one of the following equivalent conditions is satisfied.

- There is a homomorphism φ : $pA \longrightarrow qB$ and a partial isometry $v \in pMq$ such that $av = v\varphi(a)$ for all $a \in pA$.
- There is no net of unitaries $(u_i)_i$ in A such that $\|E_B(mu_i n)\|_2 \to 0$ for all $m, n \in M$.

Popa's intertwining-by-bimodules

Theorem (Popa 2006)

Let M be a II_1 factor and A, $B \subseteq M$ two Cartan subalgebras. Then A and B are unitarily conjugate if and only if one of the following equivalent conditions is satisfied.

- There is a homomorphism φ : $pA \longrightarrow qB$ and a partial isometry $v \in pMq$ such that $av = v\varphi(a)$ for all $a \in pA$.
- There is no net of unitaries $(u_i)_i$ in A such that $\|E_B(mu_i n)\|_2 \to 0$ for all $m, n \in M$.

The last condition can be checked in practice using its negation.

Popa's intertwining-by-bimodules

Theorem (Popa 2006)

Let M be a II_1 factor and A, $B \subseteq M$ two Cartan subalgebras. Then A and B are unitarily conjugate if and only if one of the following equivalent conditions is satisfied.

- There is a homomorphism φ : $pA \longrightarrow qB$ and a partial isometry $v \in pMq$ such that $av = v\varphi(a)$ for all $a \in pA$.
- There is no net of unitaries $(u_i)_i$ in A such that $\|E_B(mu_i n)\|_2 \to 0$ for all $m, n \in M$.

The last condition can be checked in practice using its negation.

So far, no analogue for intertwining-by-bimodules is available in the C*-algebraic world.

All modern results on the classification of Cartan subalgebras use Popa's deformation/rigidity theory.

All modern results on the classification of Cartan subalgebras use Popa's deformation/rigidity theory.

A sequence of "deformations" of $A \subseteq M$ consisting of ucp maps $(\phi_n)_n$ that converge pointwise in 2-norm to the identity but are small outside of A is played against

All modern results on the classification of Cartan subalgebras use Popa's deformation/rigidity theory.

- A sequence of "deformations" of $A \subseteq M$ consisting of ucp maps $(\phi_n)_n$ that converge pointwise in 2-norm to the identity but are small outside of A is played against
- rigidity of a $B \subseteq M$ forcing any such family to converge uniformly in 2-norm to the identity on the unit ball of B.

All modern results on the classification of Cartan subalgebras use Popa's deformation/rigidity theory.

- A sequence of "deformations" of $A \subseteq M$ consisting of ucp maps $(\phi_n)_n$ that converge pointwise in 2-norm to the identity but are small outside of A is played against
- rigidity of a $B \subseteq M$ forcing any such family to converge uniformly in 2-norm to the identity on the unit ball of B.

This is typically paired with a suitable smallness of a Cartan subalgebra $A \subseteq M$ called weak compactness.

All modern results on the classification of Cartan subalgebras use Popa's deformation/rigidity theory.

- A sequence of "deformations" of $A \subseteq M$ consisting of ucp maps $(\phi_n)_n$ that converge pointwise in 2-norm to the identity but are small outside of A is played against
- rigidity of a $B \subseteq M$ forcing any such family to converge uniformly in 2-norm to the identity on the unit ball of B.

This is typically paired with a suitable smallness of a Cartan subalgebra $A \subseteq M$ called weak compactness.

Theorem (Ozawa-Popa 2010)

Let $\mathbb{F}_n \sim X$ be a free, profinite action of a non-abelian free group. Then $L^{\infty}(X) \rtimes \mathbb{F}_n$ has a unique Cartan subalgebra up to unitary conjugacy.

A Cartan subalgebra arising from a group-measure space construction $\mathrm{L}^\infty(X) \subseteq \mathrm{L}^\infty(X) \rtimes \mathsf{\Gamma}$ is called a group-measure space Cartan subalgebras.

A Cartan subalgebra arising from a group-measure space construction $\mathrm{L}^\infty(X) \subseteq \mathrm{L}^\infty(X) \rtimes \mathsf{\Gamma}$ is called a group-measure space Cartan subalgebras.

The extra information about such Cartans is usually accessed either

• throught the Fourier coefficients $x_q = E(xu_g^*)$, or

A Cartan subalgebra arising from a group-measure space construction $\mathrm{L}^\infty(X) \subseteq \mathrm{L}^\infty(X) \rtimes \mathsf{\Gamma}$ is called a group-measure space Cartan subalgebras.

The extra information about such Cartans is usually accessed either

- throught the Fourier coefficients $x_q = E(xu_g^*)$, or
- the comultiplication $\Delta: L^{\infty}(X) \rtimes \Gamma \longrightarrow L^{\infty}(X) \rtimes \Gamma \overline{\otimes} L\Gamma$ satisfying $\Delta(f) = f \otimes 1$ and $\Delta(u_g) = u_g \otimes u_g$.

A Cartan subalgebra arising from a group-measure space construction $\mathrm{L}^\infty(X) \subseteq \mathrm{L}^\infty(X) \rtimes \mathsf{\Gamma}$ is called a group-measure space Cartan subalgebras.

The extra information about such Cartans is usually accessed either

- throught the Fourier coefficients $x_q = E(xu_g^*)$, or
- the comultiplication $\Delta: L^{\infty}(X) \rtimes \Gamma \longrightarrow L^{\infty}(X) \rtimes \Gamma \overline{\otimes} L\Gamma$ satisfying $\Delta(f) = f \otimes 1$ and $\Delta(u_g) = u_g \otimes u_g$.

Theorem (Popa-Vaes 2010)

Let $\Gamma = \text{PSL}_2(\mathbb{Z}) *_{\text{UT}_2(\mathbb{Z})} \text{PSL}_2(\mathbb{Z})$ and $\Gamma \sim X$ any free, mixing, pmp action. Then $\mathrm{L}^\infty(X)\rtimes \overline{\Gamma}$ has a unique group-measure space Cartan subalgebra. The action is even W*-superrigid.

A Cartan subalgebra arising from a group-measure space construction $\mathrm{L}^\infty(X) \subseteq \mathrm{L}^\infty(X) \rtimes \mathsf{\Gamma}$ is called a group-measure space Cartan subalgebras.

The extra information about such Cartans is usually accessed either

- throught the Fourier coefficients $x_q = E(xu_g^*)$, or
- the comultiplication $\Delta: L^{\infty}(X) \rtimes \Gamma \longrightarrow L^{\infty}(X) \rtimes \Gamma \overline{\otimes} L\Gamma$ satisfying $\Delta(f) = f \otimes 1$ and $\Delta(u_g) = u_g \otimes u_g$.

Theorem (Popa-Vaes 2010)

Let $\Gamma = \text{PSL}_2(\mathbb{Z}) *_{\text{UT}_2(\mathbb{Z})} \text{PSL}_2(\mathbb{Z})$ and $\Gamma \sim X$ any free, mixing, pmp action. Then $\mathrm{L}^\infty(X)\rtimes \overline{\Gamma}$ has a unique group-measure space Cartan subalgebra. The action is even W*-superrigid.

Theorem (Ioana 2011)

The Bernoulli action of any property (T) is W^* -superrigid.

From absence of Cartan subalgebras to uniqueness of Cartan subalgebras

The years after Popa introducing deformation/rigidity theory, the following pattern crystallised:

Strengthenings of absence of Cartan subalgebras for group von Neumann algebras are relativised to obtain uniqueness of Cartan subalgebras in group-meausure space constructions.

From absence of Cartan subalgebras to uniqueness of Cartan subalgebras

The years after Popa introducing deformation/rigidity theory, the following pattern crystallised:

Strengthenings of absence of Cartan subalgebras for group von Neumann algebras are relativised to obtain uniqueness of Cartan subalgebras in group-meausure space constructions.

Theorem (Chifan-Sinclair 2013)

If Γ is a hyperbolic group, then L Γ is strongly solid, that is $N_M(A)^{n}$ is amenable for every diffuse von Neumann subalgebra $A \subseteq L\Gamma$. In particular, LΓ has no Cartan subalgebra.

From absence of Cartan subalgebras to uniqueness of Cartan subalgebras

The years after Popa introducing deformation/rigidity theory, the following pattern crystallised:

Strengthenings of absence of Cartan subalgebras for group von Neumann algebras are relativised to obtain uniqueness of Cartan subalgebras in group-meausure space constructions.

Theorem (Chifan-Sinclair 2013)

If Γ is a hyperbolic group, then L Γ is strongly solid, that is $N_M(A)^{n}$ is amenable for every diffuse von Neumann subalgebra $A \subseteq L\Gamma$. In particular, LΓ has no Cartan subalgebra.

Theorem (Popa-Vaes 2014)

If $\Gamma \sim X$ is a free, ergodic, pmp action of a hyperbolic group, then $\mathrm{L}^\infty(X)\rtimes \mathsf{\Gamma}$ has a unique Cartan subalgebra up to unitary conjugacy.

A group Γ is called W*-superrigid if for any group Λ an isomorphism LΓ \cong LΛ entails an isomorphism $Γ \cong Λ$.

A group Γ is called W*-superrigid if for any group Λ an isomorphism LΓ \cong LΛ entails an isomorphism $Γ \cong Λ$.

Refinements of this notion are due to Popa and can in practice proven whenever the above statement can be established.

A group Γ is called W*-superrigid if for any group Λ an isomorphism LΓ \cong LΛ entails an isomorphism $\Gamma \cong \Lambda$.

Refinements of this notion are due to Popa and can in practice proven whenever the above statement can be established.

Conjecture (Connes 1982)

Every icc, property (T) group is W^* -superrigid.

A group Γ is called W*-superrigid if for any group Λ an isomorphism LΓ \cong LΛ entails an isomorphism $\Gamma \cong \Lambda$.

Refinements of this notion are due to Popa and can in practice proven whenever the above statement can be established.

Conjecture (Connes 1982)

Every icc, property (T) group is W^* -superrigid.

Theorem (Ioana-Popa-Vaes 2013)

There are (concrete) examples of icc groups that are W*-superrigid. Specifically, these arise as iterated generalised wreath products.

A group Γ is called W*-superrigid if for any group Λ an isomorphism LΓ \cong LΛ entails an isomorphism $\Gamma \cong \Lambda$.

Refinements of this notion are due to Popa and can in practice proven whenever the above statement can be established.

Conjecture (Connes 1982)

Every icc, property (T) group is W*-superrigid.

Theorem (Ioana-Popa-Vaes 2013)

There are (concrete) examples of icc groups that are W*-superrigid. Specifically, these arise as iterated generalised wreath products.

Theorem (Chifan-Ioana-Osin-Sun 2021)

There are (concrete) examples of icc, property (T) groups that are W^{*}-superrigid. They are extensions $1 \rightarrow (\mathbb{Z}/2)^{\Lambda} \rightarrow \Gamma \rightarrow \Lambda \rightarrow 1$ for hyperbolic groups Λ with property (T).

Theorem (Popa-Vaes 2013)

Let Γ be a weakly amenable group with positive first ℓ^2 -Betti number. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy for any free, ergodic, pmp action $\Gamma \to X$

Theorem (Popa-Vaes 2013)

Let Γ be a weakly amenable group with positive first ℓ^2 -Betti number. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy for any free, ergodic, pmp action $\Gamma \rightarrow X$

Conjecture

The group-measure space construction associated with any free,ergodic, pmp action of a group with some positive ℓ^2 -Betti number has a unique Cartan subalgebra up to unitary conjugacy.

Theorem (Popa-Vaes 2013)

Let Γ be a weakly amenable group with positive first ℓ^2 -Betti number. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy for any free, ergodic, pmp action $\Gamma \rightarrow X$

Conjecture

The group-measure space construction associated with any free,ergodic, pmp action of a group with some positive ℓ^2 -Betti number has a unique Cartan subalgebra up to unitary conjugacy.

A generalisation to arbitrary von Neumann algebras with a Cartan subalgebra could be thought of using Gaboriou's ℓ^2 -Betti numbers for II_1 equivalence relations. But I have not heard of version in any conversion I recall.

Theorem (Popa-Vaes 2013)

Let Γ be a weakly amenable group with positive first ℓ^2 -Betti number. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy for any free, ergodic, pmp action $\Gamma \cap X$

Conjecture

The group-measure space construction associated with any free,ergodic, pmp action of a group with some positive ℓ^2 -Betti number has a unique Cartan subalgebra up to unitary conjugacy.

A generalisation to arbitrary von Neumann algebras with a Cartan subalgebra could be thought of using Gaboriou's ℓ^2 -Betti numbers for II_1 equivalence relations. But I have not heard of version in any conversion I recall.

A positive solution would give computable, non-zero cohomological invariants for II_1 factors – a major open problem.

Beyond absence and uniqueness of Cartan subalgebras

I focused on uniqueness and absence of Cartan subalgebras, but this is just the tip of an iceberg.

Beyond absence and uniqueness of Cartan subalgebras

I focused on uniqueness and absence of Cartan subalgebras, but this is just the tip of an iceberg.

Theorem (Connes-Jones 1982)

There is a II_1 factor M that has exactly two Cartan subalgebras up to conjugacy by an automorphism.

Beyond absence and uniqueness of Cartan subalgebras

I focused on uniqueness and absence of Cartan subalgebras, but this is just the tip of an iceberg.

Theorem (Connes-Jones 1982)

There is a II_1 factor M that has exactly two Cartan subalgebras up to conjugacy by an automorphism.

Problem

Which eqivalence relations can arise from unitary conjugacy/ conjugacy by an automorphism of Cartan subalgebras in a II_1 factor? In particular, for any $n \in \mathbb{N}$ is there a II_1 factor with exactly n Cartan subalgebras up to unitary conjugacy / conjugacy by an automorphism.

Thank you for your attention!