Non-Hausdorff groupoids and purely infinite C*-algebras

llija Tolich in progress work with Becky Armstrong, Lisa Orloff Clark, Astrid an Huef and Diego Martínez BIRS November 2024

Victoria University of Wellington Te Herenga Waka Let G be topological groupoid.

- $G^{(0)} \subseteq G$ is locally compact and Hausdorff (in the relative topology)
- A set $B \subseteq G$ is a *bisection* if the restrictions $r|_B$ and $s|_B$ are injective.
- Iso(G) = { $\gamma \in G : r(\gamma) = s(\gamma)$ }

Definition

G is *étale* if r, s are local homeomorphisms.

Every étale groupoid G has a basis of open Hausdorff bisections.

An étale groupoid is *ample* if it has a basis of compact open bisections.

Examples

- Groupoids of Self-Similar actions (e.g. Grigorchuk Group)
- Groupoids of inverse semigroups

Non-Hausdorff groupoids introduce new wrinkles:

- $G^{(0)}$ is no longer closed. (Units can converge to elements outside $G^{(0)}$.)
- Compact sets are not necessarily closed.
- Products of continuous functions may not be continuous.

Fortunately the groupoid operations play nicely with the non-Hausdorff elements.

Definition

We say x and y in G cannot be separated if for all open sets $U, V \subseteq G$ with $x \in U, y \in V$ we have $U \cap V \neq \emptyset$. These are the problem points denoted $\mathcal{P}(G)$.

- If x and y cannot be separated then r(x) = r(y) and s(x) = s(y)
- If $x \in \mathcal{P}(G)$ then $r(x)Gs(x) \subseteq \mathcal{P}(G)$.
- If K is compact in G then r(K) and s(K) are compact and closed in G⁽⁰⁾ (w.r.t. relative topology.)

Groupoid Properties

Definition

Let G be an étale groupoid. We say G is minimal if, for all $u \in G^{(0)}$ the orbit $r(s^{-1}(u))$ is dense in $G^{(0)}$.

Definition

- 1. *G* is *topologically principal* if the set of units with trivial isotropy is dense in $G^{(0)}$.
- 2. G is effective if $Int(Iso(G)) = G^{(0)}$.
- 3. G is topologically free if $Int(Iso(G) G^{(0)}) = \emptyset$.

Definition

Let $C_c^0(G)$ be the set of functions $f : G \to \mathbb{C}$ such that there exists an open subset $V \subseteq G$ and:

- 1. V is Hausdorff
- 2. f vanishes outside V
- 3. $f|_V$ is continuous and compactly supported in V (i.e. $f \in C_c(V)$).

Let $C_c(G)$ be the span of functions in $C_c^0(G)$. These functions are *not* in general continuous.

We define multiplication and adjoints on $C_c(G)$ as follows:

$$(f * g)(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta)$$

 $f^*(\gamma) = \overline{f(\gamma^{-1})}$

< **ゆ** > わくの

For $u \in G^{(0)}$, we have left regular representations $L_u : C_c(G) \to B(\ell^2(Gu))$ satisfying

$$L_u(f)\delta_{\gamma} = \sum_{\alpha \in Gr(\gamma)} f(\alpha)\delta_{\alpha\gamma}$$
 for $f \in \mathcal{C}_c(G)$.

Definition

For $f \in C_c(G)$ we can define:

$$||f||_r := \sup\{||L_u(f)|| : u \in G^{(0)}\}$$

The reduced C*-algebra $C_r^*(G)$ is the completion of $\mathcal{C}_c(G)$ under $\|\cdot\|_r$.

Let $j : C_r^*(G) \to B(G)$ be the Renault *j*-map.

 $J_{\text{sing}} \coloneqq \{a \in C^*_r(G) : \operatorname{supp}(j(a)) \text{ is meagre}\}$

 J_{sing} doesn't intersect $C_0(G^{(0)})$ and so obstructs both simplicity and to extending faithful maps.

For a Hausdorff groupoid G restricting $f \in C_c(G)$, $f|_{G^{(0)}}$ extends to a conditional expectation $E : C_r^*(G) \to C_0(G^{(0)})$.

Let G be a non-Hausdorff groupoid and let $f \in C_c(G)$. The restriction $f|_{G^{(0)}}$ has an issue: $f|_{G^{(0)}}$ might not be in $C_0(G^{(0)})$ or even in $C_c(G)$. We have two options:

Definition

The restriction $f|_{G^{(0)}}$ extends to a faithful expectation on bounded Borel functions

$${\sf E}_r: {\sf C}^*_r({\sf G}) o \mathfrak{B}({\sf G}^{(0)}) \quad ig(\subseteq {\sf C}_0({\sf G}^{(0)})^{**}ig)$$

Or we can take a quotient to kill singular functions:

Proposition

Let

$$\mathfrak{M}(G^{(0)})\coloneqq \{g\in\mathfrak{B}(G^{(0)}):\mathrm{supp}(g) ext{ is meagre}\}$$

The restriction $f|G^{(0)} \in \mathfrak{B}(G^{(0)})/\mathfrak{M}(G^{(0)})$ extends to an expectation

 $E_{\mathrm{ess}}: C^*_r(G) \to \mathfrak{B}(G^{(0)})/\mathfrak{M}(G^{(0)}) \quad \big(\subseteq \mathcal{M}_{\mathrm{loc}}(C_0(G^{(0)}))\big)$

Definition

The essential groupoid C*-algebra is the quotient

$$\mathcal{C}^*_{\mathrm{ess}}(G)\coloneqq \mathcal{C}^*_r(G)/\{a\in \mathcal{C}^*_r(G): E_{\mathrm{ess}}(a^*a)=0\}$$

 E_{ess} is faithful on $C^*_{\text{ess}}(G)$ and $C_0(G^{(0)})$ has the i.i.p. in $C^*_{\text{ess}}(G)$.

Definition (cf Bönicke-Li, Rainone-Sims and Ma)

Let G be an ample non-Hausdorff groupoid with compact unit space. Consider $C_c(G^{(0)}, \mathbb{Z})^+ = \{\sum 1_U : U \subseteq G^{(0)}, \text{ compact open}\}$. For $f, g \in C_c(G^{(0)}, \mathbb{Z})$ we say $f \leq_G g$ if there exist finite bisections B_i such that

$$f \leq \sum_{i=1}^n \mathbb{1}_{s(B_i)}$$
 and $\sum_{i=1}^n \mathbb{1}_{r(B_i)} \leq g$

We say $f \sim_G g$ if $f \leq_G g$ and $g \leq_G f$.

The quotient $C_c(G^{(0)},\mathbb{Z})^+/\sim_G$ gives a monoid with addition and partial order

$$[f]_G + [g]_G = [f + g]_G$$
 $[f]_G \leq [g]_G$ if $f \leq_G g$

We call this monoid the *type semigroup of G*, labeled type(G).

Following Bönicke-Li, Rainone-Sims and Ma we define a notion of "paradoxicality" for G.

Definition (cf Bönicke-Li, Rainone-Sims and Ma)

For integers j > k > 0 we say f ∈ C_c(G⁽⁰⁾, Z)⁺ is (j, k)-paradoxical if jf ≤_G kf i.e. there exist bisections B_i ⊆ G

$$jf \leq \sum_{i=1}^n \mathbb{1}_{s(B_i)}$$
 and $\sum_{i=1}^n \mathbb{1}_{r(B_i)} \leq kf$

- f is completely non paradoxical if it is not (j, k)-paradoxical for any j > k > 0.
- G is completely non-paradoxical if every f ∈ C_c(G⁽⁰⁾, Z)⁺ is completely non-paradoxical.

Theorem (ACaHMT)

Let G be an ample, minimal, topologically free groupoid with compact unit space. Consider the following:

- 1. Every $f \in C_c(G^{(0)}, \mathbb{Z})^+$ is (2, 1)-paradoxical.
- 2. $C^*_{ess}(G)$ is purely infinite simple.

Then (1) \implies (2). If type(G) is almost unperforated then (2) \implies (1) and we have equivalence.

Theorem (ACaHMT)

Let G be an ample, minimal groupoid with compact unit space. The following are equivalent:

- 1. $C^*_{ess}(G)$ is stably finite
- 2. G is completely non-paradoxical

Theorem (ACaHMT)

Let G be an ample, minimal, topologically free groupoid with compact unit space. Suppose that type(G) is almost unperforated.

Then $C^*_{ess}(G)$ is simple and either purely infinite or stably finite.