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Preliminaries-non Hausdorff groupoids

Let G be topological groupoid.

• G (0) ⊆ G is locally compact and Hausdorff (in the relative topology)
• A set B ⊆ G is a bisection if the restrictions r |B and s|B are injective.
• Iso(G) = {γ ∈ G : r(γ) = s(γ)}

Definition
G is étale if r , s are local homeomorphisms.

Every étale groupoid G has a basis of open Hausdorff bisections.

An étale groupoid is ample if it has a basis of compact open bisections.

Examples
• Groupoids of Self-Similar actions (e.g. Grigorchuk Group)
• Groupoids of inverse semigroups
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Hausdorff to non-Hausdorff

Non-Hausdorff groupoids introduce new wrinkles:

• G (0) is no longer closed. (Units can converge to elements outside G (0).)
• Compact sets are not necessarily closed.
• Products of continuous functions may not be continuous.

Fortunately the groupoid operations play nicely with the non-Hausdorff elements.

Definition
We say x and y in G cannot be separated if for all open sets U, V ⊆ G with
x ∈ U, y ∈ V we have U ∩ V ̸= ∅. These are the problem points denoted P(G).

• If x and y cannot be separated then r(x) = r(y) and s(x) = s(y)
• If x ∈ P(G) then r(x)Gs(x) ⊆ P(G).
• If K is compact in G then r(K ) and s(K ) are compact and closed in G (0)

(w.r.t. relative topology.)
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Groupoid Properties

Definition
Let G be an étale groupoid. We say G is minimal if, for all u ∈ G (0) the orbit
r(s−1(u)) is dense in G (0).

Definition

1. G is topologically principal if the set of units with trivial isotropy is dense in
G (0).

2. G is effective if Int(Iso(G)) = G (0).
3. G is topologically free if Int(Iso(G) − G (0)) = ∅.

Effective

Topologically Principal Topologically Free
2nd Countable

Hausdorff
Hausdorff

2nd Countable
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The reduced C∗-algebra

Definition
Let C0

c (G) be the set of functions f : G → C such that there exists an open
subset V ⊆ G and:

1. V is Hausdorff
2. f vanishes outside V
3. f |V is continuous and compactly supported in V (i.e. f ∈ Cc(V )).

Let Cc(G) be the span of functions in C0
c (G). These functions are not in general

continuous.

We define multiplication and adjoints on Cc(G) as follows:

(f ∗ g)(γ) =
∑

αβ=γ

f (α)g(β)

f ∗(γ) = f (γ−1)
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Building C∗-algebras

For u ∈ G (0), we have left regular representations Lu : Cc(G) → B(ℓ2(Gu))
satisfying

Lu(f )δγ =
∑

α∈Gr(γ)

f (α)δαγ for f ∈ Cc(G).

Definition
For f ∈ Cc(G) we can define:

∥f ∥r := sup{∥Lu(f )∥ : u ∈ G (0)}

The reduced C*-algebra C∗
r (G) is the completion of Cc(G) under ∥ · ∥r .

Let j : C∗
r (G) → B(G) be the Renault j-map.

Jsing := {a ∈ C∗
r (G) : supp(j(a)) is meagre}

Jsing doesn’t intersect C0(G (0)) and so obstructs both simplicity and to extending
faithful maps.
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Managing Expectations

For a Hausdorff groupoid G restricting f ∈ Cc(G), f |G(0) extends to a conditional
expectation E : C∗

r (G) → C0(G (0)).

Let G be a non-Hausdorff groupoid and let f ∈ Cc(G). The restriction f |G(0) has
an issue: f |G(0) might not be in C0(G (0)) or even in Cc(G). We have two options:

Definition
The restriction f |G(0) extends to a faithful expectation on bounded Borel
functions

Er : C∗
r (G) → B(G (0))

(
⊆ C0(G (0))∗∗)
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Essential C*-algebra

Or we can take a quotient to kill singular functions:

Proposition
Let

M(G (0)) := {g ∈ B(G (0)) : supp(g) is meagre}

The restriction f |G (0) ∈ B(G (0))/M(G (0)) extends to an expectation

Eess : C∗
r (G) → B(G (0))/M(G (0))

(
⊆ Mloc(C0(G (0)))

)
Definition
The essential groupoid C*-algebra is the quotient

C∗
ess(G) := C∗

r (G)/{a ∈ C∗
r (G) : Eess(a∗a) = 0}

Eess is faithful on C∗
ess(G) and C0(G (0)) has the i.i.p. in C∗

ess(G).
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Capturing the dynamics in a monoid

Definition (cf Bönicke-Li, Rainone-Sims and Ma)
Let G be an ample non-Hausdorff groupoid with compact unit space. Consider
Cc(G (0),Z)+ = {

∑
1U : U ⊆ G (0), compact open}. For f , g ∈ Cc(G (0),Z) we

say f ≤G g if there exist finite bisections Bi such that

f ≤
n∑

i=1
1s(Bi ) and

n∑
i=1

1r(Bi ) ≤ g

We say f ∼G g if f ≤G g and g ≤G f .

The quotient Cc(G (0),Z)+/ ∼G gives a monoid with addition and partial order

[f ]G + [g ]G = [f + g ]G [f ]G ≤ [g ]G if f ≤G g

We call this monoid the type semigroup of G , labeled type(G).
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Paradoxicality

Following Bönicke-Li, Rainone-Sims and Ma we define a notion of “paradoxicality”
for G.
Definition (cf Bönicke-Li, Rainone-Sims and Ma)

• For integers j > k > 0 we say f ∈ Cc(G (0),Z)+ is (j , k)-paradoxical if
jf ≤G kf i.e. there exist bisections Bi ⊆ G

jf ≤
n∑

i=1
1s(Bi ) and

n∑
i=1

1r(Bi ) ≤ kf

• f is completely non paradoxical if it is not (j , k)-paradoxical for any
j > k > 0.

• G is completely non-paradoxical if every f ∈ Cc(G (0),Z)+ is completely
non-paradoxical.
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Stably finite and Purely infinite

Theorem (ACaHMT)
Let G be an ample, minimal, topologically free groupoid with compact unit
space. Consider the following:

1. Every f ∈ Cc(G (0),Z)+ is (2, 1)-paradoxical.
2. C∗

ess(G) is purely infinite simple.

Then (1) =⇒ (2). If type(G) is almost unperforated then (2) =⇒ (1) and we
have equivalence.

Theorem (ACaHMT)
Let G be an ample, minimal groupoid with compact unit space. The following
are equivalent:

1. C∗
ess(G) is stably finite

2. G is completely non-paradoxical
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Dichotomy

Theorem (ACaHMT)
Let G be an ample, minimal, topologically free groupoid with compact unit
space. Suppose that type(G) is almost unperforated.

Then C∗
ess(G) is simple and either purely infinite or stably finite.
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