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1 Overview of the Field
Let Qp denote the field of p-adic numbers and let K/Qp be a finite extension with residue field Fq . Artin
conjectured that such a K is C2; that is, for all positive d and all n ≥ d2, a homogeneous polynomial
f ∈ K[x0, . . . , xn] of degree d has a nontrivial solution in K. This conjecture was proven false by Terjanian,
who found a counterexample with d = 4 and K = Q2 [9]; infinitely many counterexamples have since been
found [8].

However, weaker versions of the conjecture are known to hold. For a fixed degree d, we say that K is
C2(d) if for all n ≥ d2, every degree d form f ∈ K[x0, . . . , xn] has a nontrivial solution in K. All p-
adic fields K are C2(2) and C2(3), due to Hasse and Lewis, respectively [7]. Using techniques from logic,
Ax and Kochen showed that p-adic fields are asymptotically C2(d), in the sense that for each d, when the
cardinality q of the residue field of K is sufficiently large, we have that K is C2(d) [1]. In fact, all of the
known counterexamples to Artin’s conjecture involve composite degrees d, divisible by q−1, leaving us with
an open conjecture:

Conjecture 1.1 (Artin’s conjecture for prime degree p-adic forms). Let d > 3 be prime and K/Qp be a finite
extension. Then K is C2(d).

For small degrees, namely d = 5, 7, 11, a p-adic minimization procedure due to Birch and Lewis [2],
refined by Laxton and Lewis [5], allows for the reduction to so called reduced degree d forms. If f is re-
duced and q is sufficiently large, an effective version of the Lang–Weil bounds may then be used to produce
a nonsingular Fq-solution of f , which lifts via Hensel’s lemma to a K-solution. Refinements of this general
strategy have shown that K is C2(5) whenever q ≥ 11 (and C2(7), C2(11) whenever q ≥ 884, 8054, re-
spectively). This strategy breaks down for higher (prime) d, since d can be written as the sum of composite
numbers, which allows for f to have only totally nonreduced and nonlinear components.

2 Recent Developments and Open Problems
We are primarily interested in resolving Conjecture 1.1 or improving the q thresholds for which we know the
conjecture to hold for higher d , starting with d = 5.

2.1 Quintic forms
The case of quintic forms has a rich history, with several authors contributing to the current state-of-the-art.
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Theorem 2.1 (Leep–Yeomans, Heath-Brown, Dumke [6, 4, 3]). Let d = 5 and K/Qp be a p-adic field with
residue field of size q. When q ≥ 11 we have K is C2(5).

Leep and Yeomans refined the p-adic minimization techniques of Birch and Lewis by exploiting the
structure of singular plane quintic curves to show that when q ≥ 47, a quintic polynomial over K in 26 or
more variables has a solution [6]. The key to their strategy is to carefully argue that if f has no nonsingular
solutions (which would then be liftable to K by Hensel’s lemma), then there exists a plane on which f restricts
to a quintic curve with at least 3 singularities. The presence of these singularities reduces the q threshold for
which explicit point count counting methods guarantee a liftable point.

Later, Heath-Brown recognized that their approach could be combined with a computer search to improve
the result to q ≥ 17 [4]. After a change of coordinates, the plane quintic curves produced by Leep and
Yeomans are cut out by one of the following forms

t1 = Ax3y2 +Bx3z2 + Cy3z2 + xyzQ(x, y, z),

t2 = Ax3y2 +Bx2z3 + Cy3z2 + xyzQ(x, y, z),

where A,B,C ∈ F×
q and Q ∈ Fq[x, y, z] is a quadratic form. A direct computer search shows that for

17 ≤ q ≤ 43, all such forms have a nonsingular Fq-solution.
Following a suggestion of Heath-Brown, Dumke extended the approach of Leep and Yeomans to produce

singular quintic surfaces in P3 which were amenable to the computational approach of Heath-Brown. These
surfaces are cut out by
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xixjxkQijk(xi, xj , xk) + x0x1x2x3L(x0, x1, x2, x3),

or forms g2, g3, g4 of a similar shape, where again the Qijk are quadratic forms and L is a linear form [3].
While the approach is suitable for q ≥ 7, the computations proved time-consuming enough that Dumke only
computed all such forms for q ≥ 11.

In order to achieve — or make progress toward — Artin’s conjecture for quintic forms, we seek a more
streamlined approach that applies to as many q as possible; bespoke methods should only be used when
unavoidable, as may be the case for e.g. q = 2. We also look to employ parallel computing techniques and
the latest hardware improvements, in order to successfully subdue these large search spaces.

2.2 Forms of degree 7
For forms of degree 7, the best available result in the direction of Artin’s conjecture is due to Wooley [10].

Theorem 2.2 (Wooley [10]). Let d = 7 and K/Qp be a p-adic field with residue field of size q. When
q ≥ 884 we have K is C2(7).

Wooley’s proof of this result does not ensure or exploit any singularities in the relevant degree 7 forms.
Instead, he employs an effective version of Bertini’s theorem to find planar curves of degree 7 with a non-
singular irreducible component of multiplicity one, before applying the Hasse–Weil bounds. Here the worst
case is an irreducible smooth curve of degree 7, which is guaranteed to have a point when q ≥ 884. A similar
argument shows q ≥ 8054 suffices when d = 11.

If we were able to carefully slice to produce a planar curve of degree 7 with at least 3 singular points, as
Leep and Yeomans did for quintics, we would produce a threshold of q ≥ 587, improving significantly upon
Wooley’s result. It remains to be seen whether this is low enough to make explicit computations feasible, as
in the quintic case, to lower this bound further.

3 Scientific Progress Made
The headline result of the meeting is the following, extending Theorem 2.1 and marching us ever closer to
Artin’s conjecture for quintic forms.

Theorem 3.1 (B.–K.). Let q ≥ 7 and K/Qp be a p-adic field with residue field Fq . Then K is C2(5).
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3.1 A framework for quintic forms
To prove Theorem 3.1, we develop a framework that generalizes the approaches found in previous work and
suggests a blueprint for extending the result to smaller q. The first step is to show, using geometric techniques
over finite fields, that if some f has no K-solution, then f has at least k + 1 singular solutions in a particular
configuration, starting with k = 2. With this in hand, we can list all such f over Fq and search for nonsingular
solutions; if on all such f , this search produces a nonsingular solution, then we conclude that K is C2(5).
However, if we find some f with only singular solutions, we increment k and begin the process again, hoping
to find an eventual contradiction.

Definition. Let k ≥ 1. A suspicious k-configuration is a set of k+1 distinct solutions u0, . . . , uk to f = 0
such that

• u0, . . . , uk are in general position, i.e. they span Pk,

• for all 0 ≤ i < j ≤ k, f does not vanish on every point of the line between ui and uj , and

• f has no nonsingular zeros when restricted to the Pk spanned by u0, . . . , uk.

With this definition, an intermediate result of Leep and Yeomans [6, Prop. 5.4], integral to their proof
of Theorem 2.1 when q ≥ 47, can be rephrased as follows: if f has no K-solutions, then there exists a
suspicious 2-configuration of solutions to f = 0. Heath-Brown’s approach was then to list all possible such f
(after suitable change of coordinates) satisfying the first two bullets, and compute directly that when q ≥ 17,
none of them satisfied the last bullet point.

Dumke then went a step further, showing that for 7 ≤ q ≤ 16, if f had no K-solutions, then there
must exist a suspicious 3-configuration. Critically, this step actually uses the computational data from the
suspicious 2-configurations, namely that all such f vanish on at most 4 (singular) points. For q = 11, 13, 16,
he then checked all configurations satisfying the first two bullet points (i.e. the g1, . . . , g4 mentioned earlier),
and found that all had nonsingular points.

One of our key innovations at BIRS was to recognize that we can strengthen these existence results into
extension results, and then apply this to our proof of Theorem 3.1 in the new cases of q = 7, 8, 9. We also
strengthen the valid q range for several intermediate steps along the way. One such intermediate step is the
following, which is a more flexible generalization of [6, Lemma 5.1].

Lemma 3.2. Let q ≥ 3 and f ∈ Fq[x0, . . . , xn] be a quintic form. Suppose that U, V are distinct linear
spaces of dimension s over Fq such that f vanishes on U, V and they span Ps+1. Then when restricted to the
span of U, V , f either

• has a nonsingular zero in the span of U, V ,

• vanishes precisely on U, V , or

• vanishes at every point.

This allows us to prove one of our key ingredients.

Proposition 3.3. Let q ≥ k + 2 and suppose f ∈ K[x0, . . . , x25] is a reduced quintic form. Suppose
u0, . . . , uk are a suspicious k-configuration. Then there exist Fq-solutions v0, . . . , vk+1 satisfying the first
two bullet points of a suspicious (k + 1)-configuration, such that #({u0, . . . , uk} ∩ {v0, . . . , vk+1}) ≥ k.

When k = 1, Proposition 3.3 generalizes [6, Prop. 5.4], and the k = 2 version is related to Dumke’s
work. The k = 3 version is entirely novel, and crucial to our proof of Theorem 3.1 for q = 7. When q is
small, namely q ∈ {2, 3, 4}, we are able to produce modified versions, allowing for the possibility that f
vanishes on a limited number of the lines between vi, vj .
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3.2 New computations
Leading up to the meeting at BIRS, the second author implemented a parallel search algortithm in C++/CUDA
code to be run on a modern GPU, with the goal of extending Dumke’s results to q ≤ 9. With this improved
code, we were able to confirm Dumke’s work, correct minor errors, and gather data vital to the proof of
Theorem 3.1.

When q = 8, these computations revealed that there exist no suspicious 3-configurations, thereby proving
Theorem 3.1 in this case, when considered together with the propositions above. For q = 7, 9, however, a
small handful of suspicious 3-configurations were determined to exist! For q = 9, these configurations had
f vanishing on certain lines through the vi; we are able to exclude this possibility by a minor modification of
Proposition 3.3 when k = 2 and q ≥ 5. More subtle was q = 7 for which there were three (up to scaling)
suspicious 3-configurations; proving Theorem 3.1 in this case requires the k = 3 version of Proposition 3.3,
together with a careful combinatorial argument, to produce a contradiction, yielding Theorem 3.1.

When q ≤ 5, these computations produce many (millions, in the case of q = 5) of suspicious 3-
configurations, putting a similar ad hoc argument out of reach, at least at the present moment.

3.3 Degree 7
We also made progress on the proposed improvements to Wooley’s result (Theorem 2.2). A key innovation
is a degree 7 analogue of Lemma 3.2.

Even with this, it is not quite so simple as mirroring our approach from the quintic case and looking for
a suspicious 2-configuration of Fq-points. In degree 7, this could correspond to f cutting out curves with
nonreduced components, e.g. a triple line and double quadric. Ruling out these cases remains ongoing work.

4 Outcome of the Meeting
Our meeting at BIRS was highly productive, yielding advances aimed at resolving Artin’s conjecture for p-
adic forms in degrees 5 and 7. The most notable achievement was the proof of Theorem 3.1, establishing that
all p-adic fields with residue field size q = 7, 8, 9 are C2(5). This represents a significant step toward the
resolution of the conjecture in the quintic case. Moreover, our approach combining refinements of previous
geometric and computational techniques offers the potential to attack the remaining cases of q ≤ 5.

The meeting also fostered progress on higher-degree forms, particularly for d = 7. The development of
a degree-7 analogue of Lemma 3.2 lays the groundwork for reducing the threshold for q at which we can
prove a p-adic field is C2(7). While additional work is necessary to complete this process and address further
complications, our progress in this direction is cause for optimism at both the possibility of improving on
Theorem 2.2, as well as the eventual possibility of bringing this case into a range where we can employ
computational strategies.

Other directions for future work include refining our computational techniques, extending our combi-
natorial framework to higher degrees, and further reducing the thresholds for which we can confirm Artins
conjecture. These developments offer insight that we hope will bring us closer to a full resolution of the
conjecture.
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