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1 Overview

Ties between statistical mechanics and theoretical computer science date back to the earliest days of me-
chanical computers. A revolutionary example is the development of Markov Chain Monte Carlo methods:
these were first employed to approximately determine the equation of state of a gas of hard spheres. Recently
there has been intensive activity investigating fundamental connections between these two subjects. In some
cases this has been driven by recent discoveries (e.g., the connection between physical and computational
notions of phase transitions), while in other it is driven by mathematicians, statisticians, and computer sci-
entists attempting to make precise non-rigorous predictions of practicing physicists (e.g., spin glass theory;
perceptrons).

The interplay of these subjects has lead to fruitful exchanges of tools between different mathematical
communities, and the primary goal of this meeting was to encourage further developments along these lines.
Towards this the meeting brought together researchers in combinatorics, probability, statistical mechanics,
and theoretical computer science to share methods and perspectives for problems of common interest. In-
person meetings of extended duration are uniquely helpful for this goal, as they allow for extended interac-
tions that can overcome some challenges (e.g., terminological barriers). One of the major highlights of the
workshop was the success of three overview lectures, each delivered by a different scientist, with the aim
of establishing a cooperative and collaborative base for the rest of the workshop. These lectures were all
delivered on the first day of the workshop, and we summarize them below in Section 2.1.

A second major highlight of the workshop was a series of lightning talks given by (almost) all workshop
participants that did not give a full-length talk. These talks were rapid fire (four minutes each), arranged in
two one-hour blocks on the first day of the workshop. One reason this was a highlight was the social and
collaborative benefit: everyone was quickly introduced to one another, and quickly gained an idea of common
interests and topics that could be discussed. A second reason was that the rapid sequence of talks gave a sense
of how the work of the participants fit together, and how past progress is driving current research. We describe
some specific instances of this (without attempting to be exhaustive) in Section 2.2 below.

During the remainder of the week a selected group of participants gave lectures about recent progress
they have made. The talks all concerned various probabilistic models, most of which were (or could be)
motivated by physical considerations. The range of perspectives on these models, however, was broad — from



purely probabilistic to combinatorial to algorithmic to physical. Section 3 summarizes these lectures. Some
concluding remarks are contained in Section 4, and Section 5 contains some comments on the workshop
demographics.

2 Highlights of the Workshop

2.1 Summary of Overview Lectures
2.1.1 Matthew Jenssen: Applications of the Cluster Expansion

Jenssen gave a survey talk about recent applications of a classical tool from statistical physics, the cluster
expansion, to the fields of probabilistic, extremal and enumerative combinatorics and approximate counting
and sampling in computer science, thus connecting all three of the topic areas of the workshop.

The main setting Jenssen used was that of the hard-core model (or the hard-core lattice gas). For a graph
G and an activity parameter A > 0, the hard-core model is the probability distribution pc  on the set Z(G)
of independent sets (vertex subsets containing no edges) of G defined by
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is the partition function (or normalizing constant) of the model; in graph theory the partition function is also
called the independence polynomial of G. The hard-core model generalizes to hypergraphs; in this setting
independent sets are subsets of vertices that do not contain any hyperedges.

A widely studied setting in statistical physics is that in which G,, is a sequence of growing subgraphs
(say, boxes) in 7% d > 2. Viaa limiting procedure one can then define the hard-core model on the infinite
graph Z?. The main question is that of phase transition and phase coexistence. For a given value of )\, is there
a unique limiting distribution in which vertices of the even and odd sublattices of Z¢ are equally likely to be
included in the independent set or are there multiple limiting measures possible, with one favoring indepen-
dent sets supported primarily on the even sublattice and the other on the odd sublattice? This question, along
with many other questions about the model, can be answered by computing (approximately) the partition
function Zg(\) as A varies. For instance, following the Lee—Yang framework, phase transitions are marked
by non-analyticities of the free energy,

1
fa(A) = G,{,linzd LEn] log Zg,, (M) -

Computing or approximating partitions functions like Z¢ () arises in two other fields. In combinatorics,
Za(A) is a weighted version of counting; Z¢(1) counts the total number of independent sets in a graph. Many
important combinatorial objects can be encoded as the set of independent sets of a graph or hypergraph; the
example Jenssen used was the set of triangle-free graphs on n vertices. This can be represented as the set of
independent sets of a 3-uniform hypergraph in which the (Z) vertices are the edges of the complete graph K,
and the (g) hyperedges are the sets of three edges forming triangles. An independent set in this hypergraph
is a set of edges forming no triangles, or in other words a triangle-free graph.

In algorithms, two important tasks (in machine learning, computational statistics, physics and more) are
to approximate a partition function like Z;(\) given G as an input and to sample (approximately) from
the probability distribution p,». These tasks are generally NP-hard, but in many cases efficient algorithms
exist. One of the main approaches is Markov Chain Monte Carlo and randomized algorithms (described
more in the next section), but one can also ask for efficient deterministic approximate counting algorithms.
The tractability of approximate counting and sampling has close connections to statistical physics phase
transitions; for example, the NP-hardness threshold (in A) for sampling from the hard-core model on the
family of graphs of maximum degree A coincides with the phase transition on the infinite A-regular tree [26,
23].



Thus in all three fields, techniques to compute or approximate Zg () are of great importance, though the
kinds of graphs considered often differ considerably between these fields.

One important tool for evaluating Z¢ () in statistical physics is the cluster expansion, dating back to the
work of Mayer in the 1930s. In the setting of the hard-core model, the cluster expansion is simply the Taylor
series expansion of log Z () around A = 0; it is an infinite series in powers of \. Crucially, the coefficients
of this power series can be expressed in terms of counts of connected subgraphs of the graph G. The key to
applying the cluster expansion is to verify convergence. In general, it will converge for small A (up to the
radius of convergence of the power series) but diverge for larger A\. The cluster expansion has been widely
used in statistical physics to understand the behavior of equilibrium lattice models.

Jenssen’s overview talk focused on more recent uses of the cluster expansion in combinatorics and com-
puter science. The cluster expansion has a strong connection to combinatorics through the Lovasz Local
Lemma, as discovered by Shearer [22] and elucidated by Scott and Sokal [21]. The applications Jenssen
discussed are more recent and involve the use of the cluster expansion in asymptotic enumeration.

Using the cluster expansion to count at first seems surprising because when A = 1 and Zs(\) counts
the number of independent sets of (G, the cluster expansion cannot converge (even for an empty graph one
needs |A\| < 1 for convergence). However, if the graph G has some structure — e.g. it is a lattice or a
bipartite expander graph or the Hamming cube, one can rewrite Z¢ () in terms of ‘defects’ from the largest
independent sets. If these defects are rare, they will have a small activity. For example, on a bipartite
graph with some structural properties one might expect most independent sets to lie predominantly in one
of the partition sets. Proving the defects (deviations from entirely occupying one partition set) have small
activities is possible. This perspective is not new to statistical physics; it is closely related to the use of cluster
expansion within Pirogov—Sinai theory to understand low-temperature behavior of spin models. But this is a
new perspective in combinatorics and algorithms, giving precise asymptotic enumeration results [14, 12] and
efficient approximate counting and sampling algorithms in low-temperature settings [9, 13].

Jenssen’s talk set the stage for several later talks in the workshop, including those discussing sampling
algorithms for the hard-core model and those discussing graph and hypergraph container lemmas.

2.1.2 Shayan Oveis Gharan: The MCMC Method and High Dimensional Expanders

The Markov Chain Monte Carlo (MCMC) method is one of the oldest in computer science. The general
setting is when one wishes to sample from a probability distribution p that has a support that is far too large
to enumerate. A very basic real-world example is when i is the uniform distribution on permutations of 52
— i.e., the case of playing cards — and so one approximately samples from p by shuffling many times. The
MCMC method consists of devising a Markov chain whose stationary distribution is given by ; and showing
that the Markov chain mixes quickly in some sense.

MCMC is a now-standard approach within theoretical computer science and dates back to a groundbreak-
ing 1953 work of Metropolis-Rosenbluth-Rosenbluth-Teller-Teller [18]. The setting of Metroplis et al. was
the so-called canonical hard sphere gas, i.e., the uniform distribution on sphere packings of a fixed density
in two-dimensional euclidean space. The hard sphere gas is an old and well-studied model within statistical
physics (a closely-related model was the subject of Daniel Hadas’s talk).

One of the most classical approaches to showing a bound on the mixing time of a Markov chain is via its
spectral gap: if the transition kernel is given by a matrix P with eigenvalues 1 = Ay > Ao > ... > A, >0
then its spectral gap is 1 — A2 and so one has that the mixing time starting from v is upper bounded by
log(1/7(v))/(1 — A2) where 7 is the stationary distribution. A standard example is when one considers a
random walk on a graph G that is a A-expander, in which case one has that the mixing time is bounded above
by logn/(1 — \).

In many applications, the Markov chain may be viewed as a random walk in a higher dimensional setting,
e.g. on subsets of a given size. The subject of Oveis Gharan’s talk was how to extend the notion of expanders
to higher dimensional settings, and how high-dimensional expansion (when correctly defined) leads bounds
on the mixing time of an associated Markov chain. Abstractly, this is done as follows. A simplicial complex
X with ground elements [n] is a collection of subsets of [n] that is downward closed, meaning that if A € X
and B C Athen B C X. A complex is d-dimensional if maxscx |A] = d + 1. Given a probability
measure 7 on the sets in X with exactly d + 1 elements, one defines a Markov chain that transitions from
one set S € X to another by uniformly removing an element of S and then adding a random element with



an appropriate probability. This general framework captures many Markov chains from theoretical computer
science, probability theory, and statistical physics such as the clique walk and Glauber dynamics.

Oveis Gharan introduced the notion of a high-dimensional expander along with pieces of the machinery
for using high-dimensional expansion: he demonstrated how high-dimensional expansion of X implies rapid
mixing of the associated Markov chain described above and discussed the “trickledown theorem,” a general
approach for showing high-dimensional expansion. This approach is closely related to the recent development
of the theory of spectral independence introduced by Anari, Liu and Oveis Gharan [2]. One of the major
applications of spectral independence was to show fast-mixing for Glauber dynamics for the hard-core model
on bounded degree graphs. The hard-core model is a central model in statistical physics, combinatorics, and
computer science and was a recurring theme across multiple talks in the workshop (e.g. Jenssen’s tutorial,
Hadas’s talk, and Davies’s lightning talk). Beyond the hard-core model, high-dimensional expanders and
spectral independence have found many applications throughout computer science and the analysis of models
from statistical physics, including in the lightning talks of Yap and Jain on the fixed-energy Ising model and
the canonical hard-core model respectively.

Oveis Gharan’s talk also gave an overview of several general approaches to establishing spectral expan-
sion and/or spectral independence including trickledown theorems, correlation decay, coupling arguments,
and approaches from the geometry of polynomials. This array of approaches has led to interdisciplinary
work on MCMC due to the different directions one can approach spectral expansion and mixing-time bounds
more generally. The emphasis on the interdisciplinary nature of MCMC drew connections to various works
discussed at the workshop. In the lightning talks for instance, we saw algorithmic bounds proven via complex-
analytic techniques by Regts, coupling techniques by Carlsen, and correlation decay by Mani. Oveis Gharan’s
talk described how each of these techniques and approaches can combine with the framework of high dimen-
sional expanders in order to prove robust mixing time bounds in quite general settings.

2.1.3 Mark Sellke: Algorithmic Spin Glass Theory
The field of optimization consists of solving problems of the form

min H (o) ()
for some function H and some set Y. In statistical mechanics, when H is the Hamiltonian of a system, the
optimizers of problem (1) are the ground states, i.e., configurations of minimal energy. Much of the classical
theory of optimization makes stringent assumptions on H and 3, for instance that X is a convex set and H is
a convex function. A main feature in the convex setting is that H typically has only one local minimum, in
which case there are often a host of techniques to tackle (1).

The relevant setting for Sellke’s talk is in the case when H is random and far from convex. In the setting
of glassy models, the function H often is indexed by a parameter N and the objective function H has
exponentially many local minima. Here, there is often no hope of solving (1) in the worst-case setting for
H as the problem can be NP-hard. However, there has recently been much development of algorithms for
finding the optimizers to (1) in the random (typical) case.

The specific model that is the subject of Sellke’s talk is when one has either ¥ = {—1,1}" or & =
SN=1(y/N)—i.e. the N — 1 dimensional sphere of radius v/ N—and
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where ; > 0 are constants and I'Y) are rank-j tensors of independent standard Gaussian random variables.
This is a mixed p-spin glass. The maximum value in (1) turns out to be described by the Parisi formula which
was predicted by Parisi [20] and proved mathematically by Guerra [7] and Talagrand [25]. For questions of
sampling and statistical physics, one looks at the Gibbs measure where one assigns probability proportional
to exp(—SHy (o)) to each state o. As 3 increases to infinity, this assigns all probability to the optimizers
of (1), while at 5 = 0 the Hamiltonian Hy plays no role and the Gibbs measure is the same as a uniformly
random choice of ¢ € Y. This already presents a connection between the two seemingly-disparate fields: in
statistical mechanics, the Gibbs measure is the equilibrium measure for a given energy function at a given
temperature; in computer science, it provides a softening of an optimization problem.



Sellke’s talk concerned the problem of sampling the Gibbs measure for mixed p-spin glasses and finding
configurations o € X with a given energy level. Work on this area tends to first begin with getting a heuristic
or rigorous understanding of the geometry of the solution space: depending on /3, what do typical samples
from the Gibbs measure look like? Similarly, for which x can one find a solution to Hy(c) < x? When 8
is small or x is large, the solution space is connected and one expects that one can sample with an efficient
algorithm. As ( increases or x decreases, the solution set shatters into exponentially many clusters and one
expects that sampling should not be possible.

A breakthrough work of Subag [24] introduced an algorithm to the spin glass literature known as Hessian
ascent which tackles the former regime: when things are sufficiently random-like (e.g. when z is large
enough), one can find configurations with Hy (o) < x. Recent work of Huang and Sellke [10] showed a
complementary hardness result. Subag’s work finds an algorithm up to an energy level x a1, and Huang and
Sellke showed that Lipschitz algorithms — i.e., algorithms whose outputs only have small changes under small
changes to the input I in (2) — cannot find a configuration o with Hx (0) < zarg — € for any € > 0. This is
done by showing that the solution space {o € ¥ : Hy(0) < zarc — ¢} exhibits a geometric property called
the branching overlap gap property and subsequently showing that any problem with such solution space
cannot be solved with a Lipschitz algorithm. Similarly, a class of algorithms for approximate sampling of the
Gibbs measure was ruled out by El-Alaoui, Montanari and Sellke [5] for the analagous sampling problem in
a certain regime of (3.

While much of the content of Sellke’s talk focused on the case of spin glasses, a similar story is expected
to hold for various other glassy models which appear in probability theory, combinatorics, computer science,
statistics and statistical physics. Some key examples are spin glasses (as covered in this talk as well as the
talk of Reza Gheissari); the random perceptron model (see also the talks of Brice Huang and Shuangping Li
as well as the lightning talk of Dylan Altschuler); tensor principal component analysis (which appeared in
the talk of Alex Wein); random graph matching (the focus of Gerandy Brito’s lightning talk); independent
sets in random graphs (an algorithm for which was provided in Shayan Oveis-Gharan’s tutorial lecture); and
many other models.

Sellke’s tutorial lecture provided a description not only of the state-of-the-art for the specific case of mixed
p-spin glasses but also a road-map for the development of a work on glassy models. A sociological feature
common to many of these models is that often early work on the model begins with heuristics and predictions
by physicists which guide more mathematically rigorous work on the models for decades to come. Due to
the wide class of applicable problems, often certain problems are more popular among computer scientists
or statisticians or combinatorialists despite the techniques having commonality. Sellke’s tutorial provided
a unified bird’s-eye-view of algorithmic work on glassy models by using his work on spin glasses as an
extended example.

2.2 Summary and Highlights of Lightning Talks

Every participant that was not giving a full-length talk was invited to give a four-minute lightning talk on the
first day. Over two one-hour sessions the talks given were:

e Corrine Yap: Fast and slow mixing of Kawasaki dynamics

e Dylan Altshuler: Zero-One laws for random feasibility problems

e Ewen Davies: Algorithms for independent sets of fixed size

e Gourab Ray: Structure of Gibbs measures of integer Lipschitz functions on trees

e Nitya Mani: Strong spatial mixing for colorings on trees and applications to sampling
e Vishesh Jain: Optimal mixing of the down up walk for independent sets of fixed size
e Laura Eslava: Random recursive trees

e Elizabeth Collins-Woodfin: Stochastic gradient descent in high dimensions

e Gerandy Brito: Random graph matching



Guus Regts: Approximately counting proper colorings

Candida Bowtell: Transversals in random latin squares

Holden Lee: Sampling from the continuous random energy model in TV distance
Joseph Chen: Entropic repulsion in the SOS model

Sarah Cannon: Pirogov-Sinai theory beyond lattices

Edward Zeng: The integer-valued Gaussian free field in three dimensions
Charlie Carlson: Sampling colorings (with Markov Chains)

Raimundo Bricefio: Approximability of sofic entropy

Thuy-Duong (June) Vuong: Fast algorithms for sampling

Sara Hernndez-Torres: 3D loop-erased random walks

While the talk titles give some sense of the scope of the workshop, they leave many connections hidden.
We highlight a few of these connections here to give a sense of how progress has been achieved, and to
emphasize the common themes and tools of the mathematical communities involved in the meeting.

1.

The present workshop developed out of two online meetings organized by T. Helmuth and W. Perkins in
2020 and 2021. Following discussions at the first of these meetings, an understanding of computational
hardness of approximate counting for independent sets of fixed size was developed by Davies and
Perkins [4]. The lightning talks of Jain and Yap reported on further developments in this area [11, 16].
Later in the meeting we heard (in the talk of Randall) about other problems in which similar conceptual
and technical issues concerning canonical distributions (instead of grand-canonical distributions) arise.

Ray’s talk about Lipschitz functions on trees highlighted phenomena familiar to those who have studied
the hard-core model: the presence of different Gibbs measures reflecting the parity at which the tree
is truncated. This was an excellent prelude to Park’s talk for participants more familiar with the hard-
core model/algorithms. Park’s talk in turn made use of the cluster expansion, an approach detailed in
Jenssen’s tutorial.

. The lightning talks presented various perspectives on closely related questions, particularly concern-

ing graph colorings. The talks of Carlson and Mani concerned randomized approximation algorithms
for these problems, while the talk of Regts concerned deterministic approximation algorithms. These
methods exploit different different statistical-mechanical properties of colourings: randomized algo-
rithms use as input some type of correlation decay, while deterministic algorithms utilize zero-freeness
of the partition function. The equivalence of these notions is not fully understood and this leads to an
interesting link with an important question in computing (the power of randomness).

Bowtell’s talk presented a wholly new (and seemingly challenging) problem, namely understanding
the typical structure of latin squares. Despite this, connections to other talks were present: the absorber
approach used by Bowtell is a descendant of the “Rodl nibble” (called “sprinkling” in percolation
theory). Sprinkling played an important role in Kotecky’s talk, and originated in work of Ajtai-Komlds-
Szemerédi on Sidon sequences.

3 Scientific Progress Made

To give an indication of the scientific progress made at the meeting, we summarize the main developments
that were formally discussed. Further progress occurred in informal discussions — both via the formation of
new collaborations and via the continuation of ongoing collaborations.



3.1 Probability and Combinatorics
3.1.1 Omer Angel: The Long-Range Frog Model

Consider the frog model on either Z¢ or the torus. At each site there are initially a Poisson number of sleeping
frogs. When an active frog visits a site, all frogs there wake up, perform a random walk for some time, and
die. In this work, our random walks are heavy tailed. We connect this model with long range percolation,
and derive estimates for the hitting time of a vertex and the cover time of the torus.

Based on joint work with Jonathan Hermon and Yuliang Shi.

3.1.2 Louigi Addario-Berry: Root reconstruction for SI trees

Fix a graph G and a starting vertex r (the root), and let T be a spanning tree of G grown as follows. Initially,
vertex r is infected and all other vertices are susceptible. At constant rate, each infected node infects each
neighbouring susceptible node. Eventually, all vertices are infected; the edge set of 7' is the set of edges along
which the infection spread. How easy is it to recover the identity of the initially infected individual r if one is
given access to 1?7

I will discuss recent work on this problem when G is a random graph with a fixed degree sequence. Along
the way, it is also useful to consider the case when G is an infinite tree.

Based on joint work with Sasha Bell, Tasmin Chu, Théodore Conrad-Frenkiel, Catherine Fontaine, Robin
Khanfir, and Simone Tétu.

3.1.3 Jinyoung Park: Lipschitz functions on expanders

We will discuss the typical behavior of M -Lipschitz functions on d-regular expander graphs, where an M-
Lipschitz function means any two adjacent vertices admit integer values differ by at most M. While it is
easy to see that the maximum possible height of an M -Lipschitz function on an n-vertex expander graph is
about C'M logn, where C depends (only) on d and the expansion of the given graph, it was shown by Peled,
Samotij, and Yehudayoff (2012) that a uniformly chosen random M -Lipschitz function has height at most
C' M log log n with high probability, showing that the typical height of an M -Lipschitz function is much
smaller than the extreme case. Peled-Samotij-Yehudayoff’s result holds under the condition that, roughly,
subsets of the expander graph expand by the rate of about M log(dM). We will show that the same result
holds under a much weaker condition assuming that d is large enough.
Based on joint work with Robert Krueger and Lina Li [15].

3.1.4 Wojciech Samotij: The hypergraph container lemma revisited

The hypergraph container lemma is a powerful tool in probabilistic combinatorics that has found many appli-
cations since it was first proved a decade ago. Roughly speaking, it asserts that the family of independent sets
of every uniform hypergraph can be covered by a small number of almost-independent sets, called containers.

In this talk, I will present two new versions of the hypergraph container lemma that utilise alternative
notions of almost-independence, in place of the usual "balanced supersaturation’ property. The two lemmas
display a number of other attractive features and have surprising connections to several other well-studied
topics in probabilistic combinatorics. Based on joint work with Marcelo Campos (Cambridge) [3].

3.2 Statistical Mechanics
3.2.1 Roman Kotecky: Emergence of a giant component for random cluster model on the n-cube

Sudden emergence of a giant component discovered by Erdds and Rényi concerns random subgraphs defined
in terms of Bernoulli percolation on the complete graph I,,. Similar results were obtained in other instances
of percolation on various finite graphs. In particular, the case of percolative random subgraphs of n-cube @,
was treated by Ajtai, Komls, and Szemerdi.

Surprisingly, the only result concerning emergence of a giant component when percolation is replaced by
a random cluster measure has been obtained in the case of the complete graph by Bollobds, Grimmett, and
Janson.



While formulating our results and some hints of proofs, I will touch several related topics: Potts model
and its mean field limit, Edwards-Sokal coupling, sprinkling for random cluster measures, and motivations
from statistical physics via weighted random interchange on @,,.

Based on joint work with Darion May.

3.2.2 Daniel Hadas: Random high-density packing of disks on a lattice

Consider random configurations of disjoint disks of euclidean diameter D centered on integer coordinates in
a bounded domain, where the probability for the appearance of a configuration is proportional to A", with
n being the number of tiles in the configuration. This is a special case of the Hard-core model in statistical
physics. We are interested in characterizing the periodic Gibbs measures for sufficiently large values of A. For
all but a finitely many cases for D, this was solved recently by Mazel, Stuhl and Suhov. The remaining cases
seem to display a variety of interesting behaviours. We solved the case D = 2, using Reflection Positivity. |
will present ideas from our proof, and some initial thoughts (and MCMC simulations) for the remaining open
cases. Based on joint work with Ron Peled [§].

3.3 Perceptrons and Spin Glasses
3.3.1 Reza Gheissari: Metastability in heavy-tailed spin glass dynamics

Many low-temperature dynamics in complex landscapes are expected to exhibit a sharp form of metastability,
where the state space can be partitioned into wells, such that the equilibration time within each well is much
faster than the transit time between wells, and the process tracking which well the Markov chain belongs to,
itself is asymptotically Markovian. We overview this predicted picture for mean-field spin glass dynamics,
its relation to aging predictions, and then describe recent results with Curtis Grant proving this for Glauber
dynamics for mean-field heavy-tailed spin glasses. Joint work with Curtis Grant [6].

3.3.2 Brice Huang: Algorithmic threshold for the random perceptron

We consider the problem of efficiently optimizing the random (spherical or Ising) perceptron model with
general bounded Lipschitz activation. We focus on a class of algorithms with Lipschitz dependence on the
disorder, which includes constant-order methods such as gradient descent, Langevin dynamics, and AMP on
dimension-free time-scales. Our main result exactly characterizes the optimal value ALG such algorithms
can attain in terms of a 1-dimensional stochastic control problem. Qualitatively, ALG is the largest value
whose level set contains a certain “dense solution cluster.” Quantitatively, this characterization yields both
improved algorithms and hardness results for a variety of asymptotic regimes, which are sharp up to absolute
constant factors.
Based on joint work with Mark Sellke and Nike Sun.

3.3.3 Shuangping Li: Discrepancy algorithms for the binary perceptron

The binary perceptron problem asks us to find a sign vector in the intersection of independently chosen
random halfspaces with a fixed intercept. The computational landscape of the binary perceptron is not yet
well-understood. In some regimes there may be an information-computation gap, but there is much room
for improvement on both the algorithms and lower-bounds side. In this talk I will discuss a forthcoming
work in which we analyze the performance of canonical discrepancy minimization algorithms for the binary
perceptron problem, obtaining new algorithmic results with simple off-the-shelf algorithms and relatively
simple analysis. In some settings, we complement these algorithmic results with (close, but non-matching)
overlap-gap lower bounds.
Based on joint work with Tselil Schramm and Kangjie Zhou [17].



3.4 Theoretical Computer Science
3.4.1 Nima Anari: Parallel Sampling via Counting

I will discuss how to speed up sampling from an arbitrary distribution on a product space [¢]™, given oracle ac-
cess to conditional marginals, as in any-order autoregressive models. The algorithm takes n?/? polylog(n, q)
parallel time, the first sublinear-in-n bound for arbitrary distributions. We also show a lower bound of 7'/ on
the parallel runtime of any algorithm, putting the complexity firmly in the sublinear but polynomially large
territory.

Based on joint work with Aviad Rubinstein and Ruiquan Gao [1].

3.4.2 Dana Randall: Emergent phenomena in equilibrium and nonequilibrium collectives

Programmable matter explores how collections of computationally limited agents acting locally and asyn-
chronously can achieve useful coordinated behaviors. We take a stochastic approach using techniques from
randomized algorithms and equilibrium statistical physics to develop distributed algorithms for emergent col-
lective behaviors that give guarantees and are robust to failures. We will also introduce some new tools that
may prove fruitful in nonequilibrium settings as well.

3.4.3 Alex Wein: Optimality of AMP Among Low-Degree Polynomials

The approximate message passing (AMP) framework has been widely successful at producing algorithms
with provable guarantees for a variety of high-dimensional statistical inference tasks. In some settings, AMP
is conjectured to be optimal in the sense that no computationally efficient estimator can achieve a better
mean squared error (MSE). In a simple ”signal plus noise” model (spiked Wigner), we prove a variant of this
conjecture by showing that AMP has the best possible MSE within a larger class of algorithms, namely those
that can be described as constant-degree polynomials.

Based on joint work with Andrea Montanari [19].

4 Outcome of the Meeting

The meeting was a success, exemplifying the positive effects of having researchers spend an extended period
of time together. While many participants arrived knowing only a few (or no) others, everyone was quickly
introduced via the lightning talks, which were a big success that contributed to lively discussions in breaks,
over meals, and in the moments of unstructured time (hikes; evenings). The connectedness of the subjects
of the meeting became apparent to all participants as the days progressed. While initially some speakers
mentioned that their talk may not fit the theme of the conference, as the week progressed we stopped hearing
this. Many threads connecting the subjects of the talks became apparent. The speakers at the workshop have
to be thanked for their efforts in preparing accessible and inspiring talks, which enables these connections to
be drawn without undue difficulty.

The broad scope of the workshop was gratifying for both senior and junior researchers. For more senior
participants, the workshop gave them an opportunity to meet new people and hear about new topics, in areas
where their experience already gives them a foothold. Moreover, it provided an opportunity for them to
be brought to the forefront of knowledge in specific topics (e.g., spin glass algorithms) or to be caught up
on developments in areas where they have an interest, but are not currently active participants. For junior
participants the workshop was an opportunity for them to situate their work into a broader picture and to see
how it can impact other research communities. For both junior and senior participants a recurrent theme was
that the broad set of participants shed light on definitions, conjectures, and research directions from adjacent
fields —i.e., from the ability to discuss what is typically not explicated in research papers.

The reasonable amount of unstructured time during the workshop (coffee breaks; mealtimes; evenings)
lead to many discussions. Participants have reported progress in both ongoing and new collaborations. We
are excited to see the progress that this leads to, hopefully at a future iteration of this event.
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S Demographics

In total there were thirty-nine in-person participants, of which thirteen were women. A mix of career stages
were represented, with five PhD students, six postdocs, and twenty-eighth tenure-track or tenured faculty
present. Two participants hold positions in which teaching is the primary job role, as opposed to the more
traditional R1 mix of teaching and research. Participants were primarily from institutions in the United States
(23) and Canada (6), but several other countries were represented (Chile (1), Czechia (1), Israel (2), Nether-
lands (1), Mexico (2), United Kingdom (3)). Total international representation was somewhat diminished due
to substantial delays in the Canadian visa system.
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