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PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Extremal problems:

diam(X)

Definition: X a closed hyperbolic d-manifold.

e The systole: the length of the shortest closed geodesic and the kissing number: the number of geodesics realizing it,

e the diameter:
diam(X) = max{d(z,y); z,y € X},

e the Cheeger constant (or isoperimetric constant):

. volg—1(9Y) Y C X submanifold
PX) = inf {—Vold(y) ' vol(Y) < vol(X)/2 [
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e the spectral gap: the smallest non-zero eigenvalue of A = —div o grad : C*°(X) — C°°(X) and its multiplicity.
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Extremal problems:
Fix the dimension d > 2.

Hyperbolic packing and kissing number problems:

max{sys(X); vol(X) <wv} and max{kiss(X); vol(X) <wv} 7

Covering problem:

min{diam(X); vol(X) > v} ?

[soperimetric problem:

sup{h(X); vol(X) > v} 7
Spectral problems:

sup{A\(X); vol(X) > v} and max{m;(X); vol(X) <wv} 7
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Lots of previous work: Huber 74, Cheng ’75, Huber "76, Buser '77, Huber 80, Yang—Yau 80, Jenni ’84, Burger Colbois
'85, Brooks 88, Burger-Buser—Dodziuk 88, Colbois—Colin-de-Verdiere ’88, Burger 90, Schmutz ’93, Schmutz ’94, Buser—
Sarnak 94, Bavard ’96, Bavard ’97, Schmutz-Schaller '97, Adams '98, Hamendstadt '01, Hamenstadt—Koch 02, Kim—Sarnak
‘03, Casamayou-Boucau ’05, Katz—Schaps—Vishne 07, Otal '08, Gendulphe ’09, Otal-Rosas ’09, Parlier '13, Strohmaier—
Uski 13, Fanoni—Parlier 15, Gendulphe ’15, Cook ’18, Petri-Walker 18, Petri 18, Hide-Magee 21, Jammes ’21, Bonifa-
cio 21, Kravchuk—Mazac—Pal 21, Wu-Xue ’21, Lipnowski-Wright 21, Fortier Bourque-Rafi 22, Magee-Naud—Puder 22,
Anantharaman—Monk ’23, and many others.

Known maximizers:

Picard curve

Picard curve

Klein quartic

Systole Kissing number | \; m;
genus 2 Bolza surface Bolza surface Conjecture: Conjecture:
[Jenni ‘84] 24, [Schmutz 94| | Bolza surface | Bolza surface
genus 3 Conjecture: Conjecture: Conjecture: Klein quartic

[Fortier Bourque
—P. 24+]

higher genus

Local maximizers
[Schmutz ’99]
[Hamenstadt ‘01]
[Fortier Bourque
—Rafi ‘22]

The Bolza surface

IZ7SN

The Klein quartic
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e Moreover, it’s a topological Morse function [Akrout ’03].
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The systole:

Facts: the moduli space M, — { closed orientable hyperbolic

surfaces of genus g } / isometry is a (6g — 6)-dimensional orbifold.

e The systole admits a maximum on M, for all ¢ > 2 [Mumford ’71].

e Moreover, it’s a topological Morse function [Akrout ’03].

Lemma: Let X € M,. Then

sys(X) < 4-arcsinh(y/g —1) =" 2log(g) +2.772588... + o(1)

REP

The open disk Dgys(x)/2(2) is isometric to a disk of the same radius in the hyperbolic plane. So:

Proof: take z € X

27 (cosh(sys(X)/2) — 1) = area(Dgys(x)/2(2)) < area(X) = 4n(g — 1).
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The systole:

Facts: the moduli space M, — { closed orientable hyperbolic

surfaces of genus g } / isometry is a (6g — 6)-dimensional orbifold.

e The systole admits a maximum on M, for all ¢ > 2 [Mumford ’71].

e Moreover, it’s a topological Morse function [Akrout ’03].

Lemma: Let X € M,. Then

sys(X) < 4-arcsinh(y/g —1) =" 2log(g) +2.772588... + o(1)

[Bavard ’96]:

1 oo
X) <2 h )| 2.68353 ...+ o(1
sys(X) < 2arccos (28111(%/(129 — 6))) og(g) + + o(1)
[Fortier Bourque—P ’23]:

g—0o0

sys(X) < 2log(g) +2.409... 4 o(1)
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[Fortier Bourque—P ’23|:

— previous bound
8 ] —new bound
" - record holders
> ]
w 4
77
6
5
41
31
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Open question: Does
lim max{sys(X); X € M}
900 log(g)

exist?

[Brooks ’88, Buser—Sarnak ’94]
max{sys(X); X € M,} S

lim sup
g—00 log(g)

4
3
and the limit infimum is strictly positive.

[Katz—Sabourau 24|
X); X 1
lim inf max{sys(X); X € M,} > 19
g—oo log(g) 120
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Random constructions? with Mingkun Liu

Bad news: In the “usual models”, the systole converges to a finite random variable [P. 17, Mirzakhani—P. 19,
Magee—Naud—Puder ’21, Puder—Zimhoni ’22]

Theorem [Liu—P. ’23]: There are models that show logarithmic growth.

Corollary:

max{sys(X); X € M} -

. 2
lim inf > —
900 log(g) 9

Proof idea: Randomly build a surface X, € M, with

sys(6,) 2 (5 +01)) - ogto).

Based on random triangulations combined with ideas inspired by graph theory [Linial-Simkin ’21]. 0
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Random regular covers:
Set up: X a closed hyperbolic surface and (G,,),, sequence of finite groups. Write X = I'\H?, such that T ~ 7;(X). Take

g

On € HOHI(F,Gn) = {Al,Bl, Ce 7149,Bg € Gn, [AzuBz] = 6}

i=1
uniformly at random. Get a random regular cover

X, = ker(pp)\H* — X,

Analogous model to random Cayley graphs [Gamburd—Hoory—Shahshahani—Shalev—Virag ’07]
Theorem [Liu-P. ’23]: Let G, = SL(2,Z/pZ) then, as p — oo,

P (Sys(Xp) > (% + 0(1)) -log(g)) 1

Open problem: Is a similar statement true for symmetric groups?
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Theorem [Liu—P. ’23]: Let G, = SL(2,Z/pZ) then, as p — oo,

P (s 2 (5 +0)) logte)) — 1
Proof sketch: T = 71 (X)

P(sys(X,) S R) < > P(y € ker(py))

[yler':
L(7)<R
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Theorem [Liu—P. ’23]: Let G, = SL(2,Z/pZ) then, as p — oo,

Proof sketch: I' = (X))

P (s 2 (5 +0)) logte)) — 1

P(sys(X,) SR) < ) P(y€ker(py))

[v]erT:
oy =F

. Z # {@p € HOIH(F, Gp); SDp("Y) = 6}
B = #Hom(T', G,)
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Theorem [Liu—P. ’23]: Let G, = SL(2,Z/pZ) then, as p — oo,

P (s 2 (5 +0)) logte)) — 1
Proof sketch: T = 71 (X)

P(sys(X,) SR) < ) P(y€ker(py))

['y]EFF:<R
L) —
_ Z # {pp € Hom(I', Gp); ¢p(y) = €}
- #Hom(T, G,)

Main ingredients:
e If V is an algebraic variety defined of Z/pZ for all p, then #V (Z/pZ) ~ pd=(V),
e By Huber’s prime geodesic theorem the number of terms is ~ e®/R.

So

P(sys(Xp) < R) S T

which tends to 0 when

R<(1-¢)-log(p) ~ (1—¢) - log(#G})/3 ~ (1 — &) - log(genus(X,)) /3
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The diameter:
Lemma: If X € M, then
diam(X) > (1 +o(1)) - log(g).
Additive constant improvement by [Bavard 96|
Theorem [Budzinski—Curien—P. '21]:
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The diameter:
Lemma: If X € M, then
diam(X) > (1 +o(1)) - log(g).
Additive constant improvement by [Bavard 96|
Theorem [Budzinski—Curien—P. '21]:

lim min{diam(X); X € M,}

=1.
900 log(g)

Proof sketch: A random construction:

a ‘ aﬂa ‘ aﬂ ?j
oL
p/u

Sg.a © random gluing of 2g — 2 copies P, with twist 0.



PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Goal: For every € > 0, there exists an a > 0 such that:

g—o0

P(diam(Sgﬂ) <(1+¢)- log(g)> —



PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Goal: For every € > 0, there exists an a > 0 such that:

g—o0

P(diam(Sgﬂ) <(1+¢) -log(g)> — 1L

Two inputs:

e (Probabilistic) around “most” copies of F,, Sy, “looks like” T}, up to depth ~ /g



PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Goal: For every € > 0, there exists an a > 0 such that:

g—o0

P(diam(Sgﬂ) <(1+¢) -log(g)> — 1L

Two inputs:
e (Probabilistic) around “most” copies of F,, Sy, “looks like” T}, up to depth =~ /g

e (Geometric) mg € T, a midpoint, control exponential growth of
Ny(R) = #{m € T, midpoint; d(m,my) < R}

as R — oo.
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Geometry: [', reflection group generated by the reflections in the sides of length a/2 of H,

[Patterson 88, McMullen 98|
#(Fa x9N B(0, R)) ~ cst..e®® as R — oo

and 0, — 1 as a — o0.
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e Given any two pairs of pants P, P’ € S, ,, with high probability, there are > g'/?*¢ distinct pairs of pants at distance
< 25 log(9)
~ 26,



PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Finishing the proof:

e Given any two pairs of pants P, P’ € S, ,, with high probability, there are > g'/?*¢ distinct pairs of pants at distance

< 55 1og(9).

e The probability that none of the pairs of pants “close” to P are neighbors of those “close” to P’ is o(g™3).



PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Finishing the proof:

e Given any two pairs of pants P, P’ € S, ,, with high probability, there are > g'/?*¢ distinct pairs of pants at distance

< 55 1og(9).

e The probability that none of the pairs of pants “close” to P are neighbors of those “close” to P’ is o(g™3). So, with
probability 1 — o(g™2), P and P’ are at distance < ia log(g).



PROBABILISTIC METHODS IN HYPERBOLIC GEOMETRY

Finishing the proof:

e Given any two pairs of pants P, P’ € S, ,, with high probability, there are > g'/?*¢ distinct pairs of pants at distance

< 55 1og(9).
e The probability that none of the pairs of pants “close” to P are neighbors of those “close” to P’ is o(g™3). So, with
probability 1 — o(g™2), P and P’ are at distance < ia log(g).

e Sum over the < g2 pairs of paris of pants.
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Thank you for your attention!



