Random Manifolds from Coloring

Chaim Even-Zohar Joint work with Joel Hass

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, Physical Review A, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, Physical Review A, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, Physical Review A, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, *Physical Review A*, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

1. Take a triangulated manifold M

Take a triangulated manifold M
 Randomly color vertices with k colors

Take a triangulated manifold M
 Randomly color vertices with k colors
 Assign to points the closest color(s)

 Voronoi Coloring

- 1. Take a triangulated manifold M
- 2. Randomly color vertices with k colors
- 3. Assign to points the closest color(s)
- 4. Look at r-color classes, $1 \le r \le k$

d-dimensional manifold M k colors

d-dimensional manifold M k colors

1-color class: d-dim

d-dimensional manifold M k colors

- 1-color class: d-dim
- 2-color class: (d-1)-dim

d-dimensional manifold M k colors

- 1-color class: d-dim
- 2-color class: (d-1)-dim
- r-color class: (d-r+1)-dim, $1 \le r \le k$

Basic Questions

• Is a k-color class always a manifold?

Basic Questions

- Is a k-color class always a manifold?
- Do all submanifolds of M occur?

Basic Questions

- Is a k-color class always a manifold?
- Do all submanifolds of M occur?
- Does a given manifold N occur in

some M?

Color classes are manifolds Theorem E, Hass 2022 Let X be the k-color class inside a combinatorial d-manifold M, colored using k colors, for $2 \le k \le d$.

Then X is a union of simplices that form a proper combinatorial (d-k+1)-dimensional submanifold of M.

For a subset of $m \le k$ colors, the *m*-color class is a (d-m+1)-dim submanifold with boundary.

Color classes are manifolds

Combinatorial is a necessary condition.

Color classes are manifolds

Combinatorial is a necessary condition.

Double suspension of Poincaré Homology Sphere

Color classes are manifolds

Combinatorial is a necessary condition.

Double suspension of Poincaré Homology Sphere

Given a manifold N, does it arise as the k-color class in some k-colored M?

Given a manifold N, does it arise as the k-color class in some k-colored M?

Yes.

1-color class in N ×
2-color class in N ×
3-color class in N ×

Given a closed N, does it arise as the k-color class in some closed k-colored M?

Given a closed N, does it arise as the k-color class in some closed k-colored M?

Yes, twice as the

2-color class in $M = N \times$ 3-color class in $M = N \times$...

Given a closed manifold N, and $k \ge 2$, does N arise as the entire k-color class in some closed k-colored M?

Given a closed manifold N, and $k \ge 2$, does N arise as the entire k-color class in some closed k-colored M?

Example: N = S^d in a k-colored M=S^{d+k-1}

Given a closed manifold N, and k ≥ 2, does N arise as the entire k-color class in some closed k-colored M?

Example: N = S^d in a k-colored M=S^{d+k-1}

Example: $N = RP^2$ does not arise in any M!

Given a closed manifold N, and k ≥ 2, does N arise as the entire k-color class in some closed k-colored M?

Example: N = S^d in a k-colored M=S^{d+k-1}

Example: $N = RP^2$ does not arise in any M!

Why? RP² is not null-cobordant, but k-color class = boundary[(k-1)-color class]

Theorem E, Hass 2022

Let k≥2. A manifold N occurs as the entire k-color class in some closed k-colored manifold M, if and only if N is null-cobordant.

Theorem E, Hass 2022

Let k≥2. A manifold N occurs as the entire k-color class in some closed k-colored manifold M, if and only if N is null-cobordant. Proof Idea:

- Theorem E, Hass 2022
- Let k≥2. A manifold N occurs as the entire k-color class in some closed k-colored manifold M, if and only if N is null-cobordant. Proof Idea: If N = two points,

- Theorem E, Hass 2022
- Let k≥2. A manifold N occurs as the entire k-color class in some closed k-colored manifold M, if and only if N is null-cobordant. Proof Idea: If N = two points,

- Theorem E, Hass 2022
- Let k≥2. A manifold N occurs as the entire k-color class in some closed k-colored manifold M, if and only if N is null-cobordant. Proof Idea: If N = two points,

- Theorem E, Hass 2022
- Let k≥2. A manifold N occurs as the entire k-color class in some closed k-colored manifold M, if and only if N is null-cobordant. Proof Idea: If N = two points,

Another question

Given a manifold M and $k \ge 2$, which manifolds N of codimension (k-1) arise from some triangulation and k-coloring of M?

Obstruction: N must be embeddable in M

Obstruction: N must be embeddable in M

Obstruction: M is orientable => Also N

in 3-colored S⁴

Obstruction: N must be embeddable in M

Obstruction: M is orientable => Also N

Example: no (

Klein bottle

Obstruction: N must be embeddable in M

Obstruction: M is orientable => Also N

Example: no

Klein bottle

Why?

N is a full-dim part of a boundary of a full-dim part of a boundary of a full-dim part of M.

in 3-colored S⁴

Obstruction: N must be embeddable in M

Obstruction: M is orientable => Also N

Example: no (in 3-colored S⁴

Klein bottle

In general: $w_i(M)=0 \Rightarrow A | so w_i(N)=0$

jth Stiefel-Whitney class: w_i(...) ε H^j(...,Z₂)

Obstruction: N must be embeddable in M

Obstruction: M is orientable => Also N

Example: no () in 3-colored S⁴

In general: $w_j(M)=0 \Rightarrow Also w_j(N)=0$

Klein bottle

Example: no $CP^2 \# \overline{CP^2}$ in 6-colored S^9

- Yet another question
- Given an embedding N c M of codimension
- k-1, can it be obtained up to ambient isotopy
- from some triangulation and k-coloring of M?

Theorem E, Hass 2022

Every link L is obtained as the 3-color class

of some triangulated S^3 .

- Theorem E, Hass 2022
- Every link L is obtained as the 3-color class of some triangulated S^3 .
- Moreover, letting $S^3 = \partial B^4$, every surface in B^4 bounded by L is obtained by 3-coloring B^4 .
- Generally, knotted S^{d-2} in $S^d=\partial B^{d+1}$ bounding an orientable F^{d-1} are realized by 3-colorings.

- Start with a triangulated manifold M
- Subdivide M according to a parameter n

- Start with a triangulated manifold M
- Subdivide M according to a parameter n
- Assign to vertices iid colors {1,2,...,k}
 distributed p = (p₁, p₂,..., p_k)

- Start with a triangulated manifold M
- Subdivide M according to a parameter n
- Assign to vertices iid colors {1,2,...,k} distributed p = (p₁,p₂,...,p_k)
- The resulting k-color class is your random (d-k+1)-submanifold N

- Start with a triangulated manifold M
- Subdivide M according to a parameter n
- Assign to vertices iid colors {1,2,...,k}
 distributed p = (p₁, p₂,..., p_k)
- The resulting k-color class is your random (d-k+1)-submanifold N
- Variations: location-dependent p, fixed boundary conditions, recoloring, etc.

