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Random Colors Model 

1. Take a triangulated manifold M 

2. Randomly color vertices with k colors 

3. Assign to points the closest color(s) 

4. Look at r-color classes, 1 ≤ r ≤ k 
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• 1-color class: d-dim 

• 2-color class: (d-1)-dim 

• r-color class: (d-r+1)-dim, 1 ≤ r ≤ k 
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• Is a k-color class always a manifold? 

• Do all submanifolds of M occur? 

• Does a given manifold N occur in  

  some M? 

 



Color classes are manifolds 
Theorem  E, Hass 2022 

Let X be the k-color class inside a 

combinatorial d-manifold M, colored using k 

colors, for 2≤k≤d.  

Then X is a union of simplices that form a 

proper combinatorial (d-k+1)-dimensional 

submanifold of M.  

For a subset of m≤k colors, the m-color class 

is a (d-m+1)-dim submanifold with boundary. 
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Yes, twice as the 
 

2-color class in   M = N x 
 

3-color class in   M = N x … 
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Example: N = Sd in a k-colored M=Sd+k-1 

 

Example: N = RP2 does not arise in any M!  
 

Why?  RP2 is not null-cobordant, but 

k-color class = boundary[(k-1)-color class] 
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Theorem  E, Hass 2022 
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Proof Idea: If N = two points, 
 



Does N occur in M ? 

Another question 

Given a manifold M and k≥2, which manifolds  

N of codimension (k-1) arise from some  

triangulation and k-coloring of M? 
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Why?   

N is a full-dim part of a boundary of a full-dim 

part of a boundary of a full-dim part of M. 
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Does N occur in M ? 

Obstruction: N must be embeddable in M 
 

Obstruction: M is orientable   =>   Also N  
 

Example: no               in 3-colored S4  

 

 

In general:  wj(M)=0   =>   Also wj(N)=0 
 

Example: no CP2 # CP2 in 6-colored S9 

Klein bottle 



Does N occur in M ? 

Yet another question 

Given an embedding N c M of codimension  

k-1, can it be obtained up to ambient isotopy  

from some triangulation and k-coloring of M? 
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Does N occur in M ? 

Theorem  E, Hass 2022 

Every link L is obtained as the 3-color class 

of some triangulated S3. 

Moreover, letting S3 = ∂B4, every surface in 

B4 bounded by L is obtained by 3-coloring B4. 

Generally, knotted Sd-2 in Sd=∂Bd+1 bounding 

an orientable Fd-1 are realized by 3-colorings. 
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Random Manifolds Model 

• Start with a triangulated manifold M 

• Subdivide M according to a parameter n  

• Assign to vertices iid colors {1,2,…,k} 

distributed p = (p1,p2,…,pk) 

• The resulting k-color class is your 

random (d-k+1)-submanifold N 

• Variations: location-dependent p, fixed 

boundary conditions, recoloring, etc.   
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