Random Manifolds from Coloring

Chaim Even-Zohar Joint work with Joel Hass

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, *Physical Review A*, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, *Physical Review A*, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, *Physical Review A*, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

A growing self-avoiding walk in three dimensions and its relation to percolation. RM Bradely, PN Strensky, JM Debierre, *Physical Review A*, 1992.

Tricolor percolation and random paths in 3D. S Sheffield, A Yadin. *Elecronic Journal of Probability*, 2014.

Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures. M de Crouy-Chanel, D Simon. Journal of Statistical Physics, 2019.

1. Take a triangulated manifold M

1. Take a triangulated manifold M 2. Randomly color vertices with k colors

1. Take a triangulated manifold M 2. Randomly color vertices with k colors 3. Assign to points the closest color(s) = Voronoi Coloring

- **1. Take a triangulated manifold M**
- **2. Randomly color vertices with k colors**
- **3. Assign to points the closest color(s)**
- **4. Look at r-color classes, 1 ≤ r ≤ k**

d-dimensional manifold M k colors

- **d-dimensional manifold M**
- **k colors**

• **1-color class: d-dim**

- **d-dimensional**
- **manifold M**
- **k colors**

- **1-color class: d-dim**
- **2-color class: (d-1)-dim**

- **d-dimensional**
- **manifold M**
- **k colors**

- **1-color class: d-dim**
- **2-color class: (d-1)-dim**
- **r-color class: (d-r+1)-dim, 1 ≤ r ≤ k**

Basic Questions

• **Is a k-color class always a manifold?**

Basic Questions

- **Is a k-color class always a manifold?**
- **Do all submanifolds of M occur?**

Basic Questions

- **Is a k-color class always a manifold?**
- **Do all submanifolds of M occur?**
- **Does a given manifold N occur in**

 some M?

Color classes are manifolds Theorem E, Hass 2022 Let **X** be the **k**-color class inside a combinatorial **d**-manifold **M**, colored using **k** colors, for **2≤k≤d**. Then **X** is a union of simplices that form a

proper combinatorial **(d-k+1)**-dimensional submanifold of **M**.

For a subset of **m≤k** colors, the **m**-color class is a **(d-m+1)**-dim submanifold with boundary.

Color classes are manifolds

Combinatorial is a necessary condition.

Color classes are manifolds

Combinatorial is a necessary condition.

Double suspension of Poincaré Homology Sphere

Color classes are manifolds

Combinatorial is a necessary condition.

Double suspension of Poincaré Homology Sphere

Given a manifold **N**, does it arise as the **k**-color class in some **k**-colored **M**?

Given a manifold **N**, does it arise as the **k**-color class in some **k**-colored **M**?

Yes. **1**-color class in $N \times 0$ 2-color class in **N X 0-3**-color class in **N x**

Given a closed **N**, does it arise as the **k**-color class in some **closed k**-colored **M**?

Given a closed **N**, does it arise as the **k**-color class in some **closed k**-colored **M**?

Yes, **twice** as the

2-color class in $M = N \times \boxed{N}$ **3**-color class in **M = N x …**

Given a closed manifold **N**, and **k ≥ 2**, does **N** arise as the **entire k**-color class in some **closed k**-colored **M**?

Given a closed manifold **N**, and **k ≥ 2**, does **N** arise as the **entire k**-color class in some **closed k**-colored **M**?

Example: $N = S^d$ in a **k**-colored $M = S^{d+k-1}$

Given a closed manifold **N**, and **k ≥ 2**, does **N** arise as the **entire k**-color class in some **closed k**-colored **M**?

Example: $N = S^d$ in a **k**-colored $M = S^{d+k-1}$

Example: **N = RP2** does not arise in any **M**!

Given a closed manifold **N**, and **k ≥ 2**, does **N** arise as the **entire k**-color class in some **closed k**-colored **M**?

Example: $N = S^d$ in a **k**-colored $M = S^{d+k-1}$

Example: **N = RP²**does not arise in any **M**!

Why? RP²is not null-cobordant, but **k**-color class = boundary[**(k-1)**-color class]

Theorem E, Hass 2022

Let **k≥2.** A manifold **N** occurs as the entire **k**-color class in some closed **k**-colored manifold **M**, **if and only if N** is null-cobordant.

Theorem E, Hass 2022

Theorem E, Hass 2022

Theorem E, Hass 2022

Theorem E, Hass 2022

Theorem E, Hass 2022

Another question

Given a manifold **M** and **k≥2**, which manifolds **N** of codimension **(k-1)** arise from some **triangulation** and **k-coloring** of **M**?

Obstruction: **N** must be embeddable in **M**

Obstruction: **N** must be embeddable in **M**

Obstruction: **M** is orientable **=**> Also **N**

Obstruction: **N** must be embeddable in **M**

Obstruction: **M** is orientable **=**> Also **N**

Klein bottle

Obstruction: **N** must be embeddable in **M**

Obstruction: **M** is orientable **=**> Also **N**

Klein bottle

Why?

N is a full-dim part of a boundary of a full-dim part of a boundary of a full-dim part of **M**.

Obstruction: **N** must be embeddable in **M**

Obstruction: **M** is orientable **=**> Also **N**

Example: no $\left(\bigcirc$ in 3-colored S^4

Klein bottle

In general: w^j (M)=0 => Also **w^j (N)=0**

jth Stiefel-Whitney class: **w^j (…) є H^j (…,Z²)**

Obstruction: **N** must be embeddable in **M**

Obstruction: **M** is orientable **=**> Also **N**

Example: no $\left(\bigcirc$ \leftarrow 1 in 3-colored 5⁴

Klein bottle

In general: w^j (M)=0 => Also **w^j (N)=0**

Example: no **CP²# CP²** in 6-colored **S⁹**

- **Yet another question**
- Given **an embedding N c M** of codimension
- **k-1**, can it be obtained up to ambient isotopy
- from some triangulation and **k**-coloring of **M**?

Theorem E, Hass 2022

Every link **L** is obtained as the **3**-color class

of some triangulated **S3.**

- **Theorem** E, Hass 2022
- Every link **L** is obtained as the **3**-color class of some triangulated **S³.**
- **Moreover**, letting **S³ = ∂B⁴** , every surface in **B⁴** bounded by **L** is obtained by **3**-coloring **B⁴**.
- **Generally,** knotted **Sd-2** in **S^d=∂Bd+1** bounding an orientable **Fd-1** are realized by **3**-colorings.

- Start with a triangulated manifold **M**
- Subdivide **M** according to a parameter **n**

- Start with a triangulated manifold **M**
- Subdivide **M** according to a parameter **n**
- Assign to vertices iid colors **{1,2,…,k}** distributed $\mathbf{p} = (\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_k)$

- Start with a triangulated manifold **M**
- Subdivide **M** according to a parameter **n**
- Assign to vertices iid colors **{1,2,…,k}** distributed $\mathbf{p} = (\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_k)$
- The resulting **k**-color class is your random **(d-k+1)**-submanifold **N**

- Start with a triangulated manifold **M**
- Subdivide **M** according to a parameter **n**
- Assign to vertices iid colors **{1,2,…,k}** distributed $\mathbf{p} = (\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_k)$
- The resulting **k**-color class is your random **(d-k+1)**-submanifold **N**
- **Variations**: location-dependent **p**, fixed boundary conditions, recoloring, etc.

