Computing Character Varieties and Schemes in $SL_2(\mathbb{C})$

Joan Porti

Universitat Autònoma de Barcelona

April 4, 2024

Joint work with M. Heusener

BIRS

KNOT THEORY INFORMED BY RANDOM MODELS AND EXPERIMENTAL DATA

Variety/Scheme of Representations

• $\Gamma = \langle \gamma_1, \ldots, \gamma_n \mid r_1, \ldots, r_m \rangle$ finitely presented group (eg $\Gamma = \pi_1(S^3 \setminus K)$).

 $\mathsf{hom}(\Gamma,\mathrm{SL}_2(\mathbb{C}))\subset \mathrm{SL}_2(\mathbb{C})\times \cdots \times \mathrm{SL}_2(\mathbb{C})\subset \mathbb{C}^{4n}$

It is an algebraic subset of \mathbb{C}^{4n} called the variety of representations.

- It has more structure than a variety, it is an affine scheme (with perhaps several components and multiple points, eg $x^2 = 0$ is different from x = 0 as a scheme).
- SL₂(C) acts on hom(Γ, SL₂(C)) by conjugation The topological quotient hom(Γ, SL₂(C))/SL₂(C) may be non-Hausdorff.

Def The character of $\rho \in \mathsf{hom}(\Gamma, \mathrm{SL}_2(\mathbb{C}))$ is the map

 $\begin{array}{rcl} \chi_{\rho} \colon \mathsf{\Gamma} & \to & \mathbb{C} \\ \gamma & \mapsto & \operatorname{trace}(\rho(\gamma)) \end{array}$

Lemma $\overline{\operatorname{Orbit}(\rho_1)} \cap \overline{\operatorname{Orbit}(\rho_2)} \neq \emptyset$ iff $\chi_{\rho_1} = \chi_{\rho_2}$. Thm (Procesi) $X(\Gamma) = \{\chi_{\rho} \colon \Gamma \to \mathbb{C} \mid \rho \in \operatorname{hom}(\Gamma, \operatorname{SL}_2(\mathbb{C}))\}$ is the "algebraic quotient". $X(\Gamma) = \operatorname{hom}(\Gamma, \operatorname{SL}_2(\mathbb{C}))//\operatorname{SL}_2(\mathbb{C}))$

Scheme of characters

- $\Gamma = \langle \gamma_1, \ldots, \gamma_n \mid r_1, \ldots, r_m \rangle$ finitely presented group (eg $\Gamma = \pi_1(S^3 \setminus K)$).
- What is the algebraic structure of $X(\Gamma) = \{\chi_{\rho} \colon \Gamma \to \mathbb{C} \mid \rho \in \hom(\Gamma, \operatorname{SL}_2(\mathbb{C}))\}$?
- Def: Trace function:

$$egin{array}{rl} {t_\gamma}\colon \mathsf{hom}(\mathsf{\Gamma},\mathrm{SL}_2\mathbb{C})& o&\mathbb{C}\
ho&\mapsto&\mathrm{trace}(
ho(\gamma)) \end{array}$$

(Procesi) $X(\Gamma)$ embeds in \mathbb{C}^N with coordinates $t_{\gamma_1}, \ldots, t_{\gamma_N}$ for some $\gamma_1, \ldots, \gamma_N \in \Gamma$, as an algebraic subset (as an affine scheme) called the scheme of characters

 Procesi proves that the algebral of SL₂(ℂ)-invariant polynomial functions ℂ[hom(Γ, SL₂(ℂ))]^{SL₂(ℂ)} is finitely generated by t_{γ1},..., t_{γN} and define X(Γ) by the property ℂ[X(Γ)] = ℂ[hom(Γ, SL₂(ℂ))]^{SL₂(ℂ)}. Then points in X(Γ) are viewed as a characters.

Scheme of characters for a free group

Thm (Fricke-Klein) For $F_2 = \langle a, b \mid \rangle$, there is an isomorphim

 $(t_a, t_b, t_{ab}): X(F_2) \stackrel{\cong}{\longrightarrow} \mathbb{C}^3$

- Equivalently the function algebra is polynomial $\mathbb{C}[X(F_2)] = \mathbb{C}[t_a, t_b, t_{ab}]$
- or for every $\gamma \in \Gamma$, the trace function t_{γ} is a unique polynomial on t_a , t_b and t_{ab}
- The proof uses trace identities for A, B ∈ SL₂(ℂ):
 - $\begin{array}{ll} \operatorname{trace}(AB) = \operatorname{trace}(BA) & \rightsquigarrow t_{\gamma\mu} = t_{\mu\gamma} \\ \operatorname{trace}(A^{-1}) = \operatorname{trace}(A) & \rightsquigarrow t_{\alpha^{-1}} = t_{\alpha} & \forall \gamma, \mu \in \Gamma. \end{array}$
 - $-\operatorname{trace}(AB) + \operatorname{trace}(AB^{-1}) = \operatorname{trace}(A)\operatorname{trace}(B) \rightsquigarrow t_{\gamma\mu} + t_{\gamma\mu^{-1}} = t_{\mu}t_{\gamma}$

Use the identities to reduce the word length of γ in t_{γ} . Eg: $t_{a^2} = t_a^2 - 2$, $t_{aba^{-1}b^{-1}} = t_a^2 + t_b^2 + t_{ab}^2 - t_a t_b t_{ab} - 2$

- For F_n in general X(F_n) is also known (Magnus 1980).
 The affine scheme X(F_n) is irreducible and has no multiple points (eg a variety).
- Goal: From a finite presentation of Γ , what is the role of the relations? Find an algorithm to compute $X(\Gamma)$

Main result

- $\Gamma = \langle \gamma_1, \dots, \gamma_n \mid r_1, \dots, r_m \rangle$ finitely presented group (eg $\Gamma = \pi_1(S^3 \setminus K)$).
- Thm (Fico-Montesinos 1993) As variety, $X(\Gamma)$ is the subvariety of $X(F_n)$ with equations

$$t_{r_i}=2, \qquad t_{r_i\gamma_j}=t_{\gamma_j}$$

for $1 \le i \le m$, $1 \le j \le n$ (and taking the radical ideal).

Thm (Heusener-P 2023) As scheme, $X(\Gamma)$ is the subscheme of $X(F_n)$ with equations

$$t_{r_i} = 2,$$
 $t_{r_i\gamma_j} = t_{\gamma_j},$ $t_{r_i\gamma_j\gamma_k} = t_{\gamma_j\gamma_k}$

for $1 \le i \le m$, $1 \le j < k \le n$.

- Steps of the proof:
 - 1 As subscheme of $X(F_n)$, $X(\Gamma)$ is given by the equations $t_{\gamma} = t_{\mu}$ for every pair
 - $\gamma, \mu \in F_n$ that project to the same element in Γ (using the skein algebra).
 - 2 Use trace relations to reduce to these equations.
- ...BUT COMPUTATIONALLY INEFFICIENT

Why care about schemes?

Ex: $S^{3}(K_{8},3)$ orbifold with underlying space S^{3} , branching locus the figure eight knot and ramification index 3.

 $\Gamma = \pi_1^{\mathrm{orb}}(S^3(K_8,3)) = \langle a, b \mid ab^{-1}a^{-1}ba = bab^{-1}a^{-1}b, \ a^3 = 1 \rangle$

X(Γ) embeds in C² with coordinates t_a = t_b and t_{ab}. It has two simple points and one double point:

 $t_a - 2 = t_{ab} - 2 = 0$, $t_a + 1 = t_{ab} + 1 = 0$ and $t_a + 1 = (t_{ab} - 1)^2 = 0$

- The orbifold S³(K₈, 3) is Euclidean and the double point is a lift to SU(2) of the rotational part of the holonomy in SO(3) ≅ PSU(2)
- Ex: $S^{3}(Wh, (8, 4))$ orbifold with underlying space S^{3} , ramification locus the Whitehead link and ramification indexes 8 and 4.
 - $X(\pi_1^{\text{orb}}(S^3(Wh, (8, 4))))$ has 21 simple points and 2 triple points.
 - The orbifold $S^3(Wh, (4, 2))$ has a Nil structure and its holonomy is related to triple points.

THANKS YOU FOR YOUR ATTENTION