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Variety/Scheme of Representations
• Γ = ⟨γ1, . . . , γn | r1, . . . , rm⟩ finitely presented group (eg Γ = π1(S

3 \ K )).

hom(Γ, SL2(C)) ⊂ SL2(C)× · · · × SL2(C) ⊂ C4n

It is an algebraic subset of C4n called the variety of representations.
• It has more structure than a variety, it is an affine scheme (with perhaps several
components and multiple points, eg x2 = 0 is different from x = 0 as a scheme).

• SL2(C) acts on hom(Γ,SL2(C)) by conjugation
The topological quotient hom(Γ, SL2(C))/SL2(C) may be non-Hausdorff.

Def The character of ρ ∈ hom(Γ,SL2(C)) is the map

χρ : Γ → C
γ 7→ trace(ρ(γ))

Lemma Orbit(ρ1) ∩Orbit(ρ2) ̸= ∅ iff χρ1 = χρ2 .

Thm (Procesi) X (Γ) = {χρ : Γ → C | ρ ∈ hom(Γ,SL2(C))} is the “algebraic quotient”.

X (Γ) = hom(Γ,SL2(C))//SL2(C))



Scheme of characters

• Γ = ⟨γ1, . . . , γn | r1, . . . , rm⟩ finitely presented group (eg Γ = π1(S
3 \ K )).

• What is the algebraic structure of X (Γ) = {χρ : Γ → C | ρ ∈ hom(Γ,SL2(C))} ?

Def: Trace function:
tγ : hom(Γ,SL2C) → C

ρ 7→ trace(ρ(γ))

(Procesi) X (Γ) embeds in CN with coordinates tγ1 , . . . , tγN for some γ1, . . . , γN ∈ Γ, as an
algebraic subset (as an affine scheme) called the scheme of characters

• Procesi proves that the algebral of SL2(C)-invariant polynomial functions
C[hom(Γ, SL2(C))]SL2(C) is finitely generated by tγ1 , . . . , tγN
and define X (Γ) by the property C[X (Γ)] = C[hom(Γ,SL2(C))]SL2(C).
Then points in X (Γ) are viewed as a characters.



Scheme of characters for a free group

Thm (Fricke-Klein) For F2 = ⟨a, b |⟩, there is an isomorphim

(ta, tb, tab) : X (F2)
∼=−→ C3

– Equivalently the function algebra is polynomial C[X (F2)] = C[ta, tb, tab]
– or for every γ ∈ Γ, the trace function tγ is a unique polynomial on ta, tb and tab

• The proof uses trace identities for A,B ∈ SL2(C):
– trace(AB) = trace(BA) ⇝ tγµ = tµγ
– trace(A−1) = trace(A) ⇝ tγ−1 = tγ ∀γ, µ ∈ Γ.
– trace(AB) + trace(AB−1) = trace(A)trace(B) ⇝ tγµ + tγµ−1 = tµtγ

Use the identities to reduce the word length of γ in tγ .
Eg: ta2 = t2a − 2, taba−1b−1 = t2a + t2b + t2ab − tatbtab − 2

• For Fn in general X (Fn) is also known (Magnus 1980).
The affine scheme X (Fn) is irreducible and has no multiple points (eg a variety).

Goal: From a finite presentation of Γ, what is the role of the relations?
Find an algorithm to compute X (Γ)



Main result
• Γ = ⟨γ1, . . . , γn | r1, . . . , rm⟩ finitely presented group (eg Γ = π1(S

3 \ K )).

Thm (Fico-Montesinos 1993) As variety, X (Γ) is the subvariety of X (Fn) with
equations

tri = 2, triγj = tγj

for 1 ≤ i ≤ m, 1 ≤ j ≤ n (and taking the radical ideal).

Thm (Heusener-P 2023) As scheme, X (Γ) is the subscheme of X (Fn) with equations

tri = 2, triγj = tγj , triγjγk = tγjγk

for 1 ≤ i ≤ m, 1 ≤ j < k ≤ n.

• Steps of the proof:
1 As subscheme of X (Fn), X (Γ) is given by the equations tγ = tµ for every pair

γ, µ ∈ Fn that project to the same element in Γ (using the skein algebra).
2 Use trace relations to reduce to these equations.

• ...but computationally inefficient



Why care about schemes?
Ex: S3(K8, 3) orbifold with underlying space S3, branching locus the figure eight knot

and ramification index 3.

Γ = πorb
1 (S3(K8, 3)) = ⟨a, b | ab−1a−1ba = bab−1a−1b, a3 = 1⟩

• X (Γ) embeds in C2 with coordinates ta = tb and tab. It has two simple points
and one double point:

ta − 2 = tab − 2 = 0, ta + 1 = tab + 1 = 0 and ta + 1 = (tab − 1)2 = 0

• The orbifold S3(K8, 3) is Euclidean and the double point is a lift to SU(2) of the
rotational part of the holonomy in SO(3) ∼= PSU(2)

Ex: S3(Wh, (8, 4)) orbifold with underlying space S3, ramification locus the
Whitehead link and ramification indexes 8 and 4.

• X (πorb
1 (S3(Wh, (8, 4)) has 21 simple points and 2 triple points.

• The orbifold S3(Wh, (4, 2)) has a Nil structure and its holonomy is related to
triple points.

Thanks you for your attention


