## Knots in Self-Avoiding Polygons

Neal Madras Department of Mathematics and Statistics York University Toronto, Canada

April 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Self-avoiding polygons

An *N*-step self-avoiding polygon (SAP) is a simple closed curve consisting of *N* edges of the lattice  $\mathbb{Z}^d$  ( $d \ge 2$ ).



This is a 22-step self-avoiding polygon in  $\mathbb{Z}^2$ .

Let  $p_N$  be the number of *N*-step SAPs modulo translation.

E.g. in 
$$\mathbb{Z}^2$$
:  $p_4 = 1$ ,  $p_6 = 2$ ,  $p_8 = 7$   
in  $\mathbb{Z}^3$ :  $p_4 = 3$ ,  $p_6 = 22$ ,  $p_8 = 207$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Let  $p_N$  be the number of *N*-step SAPs modulo translation. Concatenation:  $p_{N+M} \ge p_N p_M \quad \forall M, N \text{ (even)}.$ 



(may need a rotation in 3 or more dimensions)

$$\therefore \quad \lim_{N \to \infty} p_N^{1/N} = \mu := \sup_N p_N^{1/N}. \quad \text{That is, } p_N = \mu^{N+o(N)}.$$

Motivation: model of conformations of ring polymer molecules

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Knots in Self-Avoiding Polygons

Let K be a knot type (e.g. trefoil or unknot).

Let  $p_N[K]$  be the number of *N*-step SAP's in  $\mathbb{Z}^3$  of knot type *K*. What we know about the asymptotics of  $p_N[K]$ :

(i) For the unknot  $O: \mu[O] := \lim_{N\to\infty} p_N[O]^{1/N}$  exists. (Proof:  $p_n[O] p_m[O] \le p_{n+m}[O]$ .)

(ii)  $\mu[O] < \mu$ . More generally, for any fixed knot type K,  $p_N[K]$  is exponentially smaller than  $p_N$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Sumners & Whittington 1988; Pippenger 1989)

**Open Problem:** For  $K \neq O$ , prove that  $\mu[K] := \lim_{N \to \infty} p_N[K]^{1/N}$  exists and equals  $\mu[O]$ .

(Easy part:  $p_n[O] p_m[K] \le p_{n+m}[K]$ . Fixing *m* shows  $\mu[O] \le \mu[K]$ , if the limit exists.)

Simulations and theoretical arguments (Orlandini et al. 1996) indicate that

$$rac{
ho_N[K]}{
ho_N[O]} \ symp \ N^{f(K)} \quad ext{ as } N o \infty$$

where f(K) is the number of prime knots in the knot K.

Can we prove this for knots in a slab between two planes, e.g.  $\mathbb{Z}\times\mathbb{Z}\times[0,10]?$   $\ldots$  still too hard.

How about for knots in an infinitely long tube, e.g.  $\mathbb{Z}\times [0,10]\times [0,10]? \qquad \ldots$  still too hard.

How about for knots in the narrowest possible tube, i.e.  $\mathbb{Z} \times [0,2] \times [0,1]$ ? ... YES! (iii) Beaton, Ishihara, Atapour, Eng, Vazquez, Shimokawa, Soteros 2022 arxiv:2204.06186 (44 pages)

(From the abstract: "As part of the proof, we show that a 4-plat diagram of a 2-bridge link can always be unknotted by the insertion of a 4-braid diagram whose crossing number is bounded by the minimal crossing number of the link.")

Here is one more thing that we know:

(iv) The commonest knot type is not exponentially rare: For each N, let  $K_N$  be the knot type K that maximizes  $p_N[K]$ . Then

$$\lim_{N\to\infty}p_N[K_N]^{1/N} = \mu.$$

(Madras 2023)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●