
FACTORS AND HIGH-DIMENSIONAL TIME SERIES:

THE Dynamic, THE Static, AND THE Weak

Marc Hallin

ECARES and Department of Mathematics
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• After many interesting talks about high-dimensional matrix- and tensor-valued

time series ...

• ... for the closing talk, let us go back to simpler traditional real-valued time

series!

• Everything in this talk remains valid in the matrix- and tensor-valued context,

though.

• Work in progress (with Matteo Barigozzi).
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The family tree of Factor Models is rooted in early-twentieth-century

psychometrics: the concept of (unobserved) factor first appears a hundred and

twenty years ago in

Spearman, C. (1904). General intelligence, objectively determined and

measured, The American Journal of Psychology , Vol. 15, pp. 201–292.

But the story of Factor Models in High-Dimensional Time Series and Time-Series

Econometrics takes off with

Chamberlain, G. (1983). Funds, factors and diversification in arbitrage pricing

models, Econometrica, Vol. 51, pp. 1305–1323

and

Chamberlain, G. and Rothschild, M. (1983). Arbitrage, factor structure, and

mean-variance analysis on large asset markets, Econometrica, Vol. 51, pp.

1281–1323

and their approximate static factor model.

FACTORS AND HIGH-DIMENSIONAL TIME SERIES:THE Dynamic, THE Static, AND THE Weak – p. 3/35



2. The Static: Chamberlain and Rothschild

The model proposed by Chamberlain and Rothschild is

• an approximate factor model (the n-dimensional idiosyncratic component is

not required to be an i.i.d. process of mutually orthogonal zero-mean variables

with finite diagonal covariance matrix)

• with static loadings (the unobserved factors are loaded contemporeanously

via a matrix of loadings).

Their factor model decomposition is

Xit = χstat
it + ξstat

it := Bift + ξstat
it i = 1, . . . , n, t = 1, . . . T

with a crucial novel (wrt to previous literature) feature: high-dimensional

asymptotics are considered, with both n and T going to infinity.
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Assumptions are quite mild:

(a) X11, . . . XnT is the observed finite-(n, T ) realization of a second-order

stationary process X = {Xit|i ∈ N, t ∈ Z} with (for ease of exposition and

without loss of generality) zero-mean, strictly positive variances, and finite

second-order moments;

(b) χstat
t = (χstat

1t , . . . , χ
stat
nt )

′ (the statically common component) is the value at

time t of the unobserved finite-(n, T ) realization of a second-order

stationary process {χstat
it } with n× n covariance matrix Σ

(n)
χ ; as n → ∞,

the r nonzero eigenvalues of Σ
(n)
χ tend to infinity;

(c) Bi is a 1× r row vector of scalar loadings;

(d) ft = (f1t, . . . , frt)′ is a second-order stationary latent r-dimensional

process of factors with E[ft] = 0, E[ftf ′t ] = Ir×r , and E[fktξjt] = 0

for 1 ≤ k ≤ r, 1 ≤ j ≤ n, and t ∈ Z;

(e) ξstat
t = (ξstat

1t , . . . , ξstat
nt )

′ (the statically idiosyncratic component) is the value

at time t of the unobserved finite-(n, T ) realization of a second-order

stationary process {ξstat
it } with n× n covariance matrix Σ

(n)
ξ

; as n → ∞, the

eigenvalues of Σ
(n)
ξ

remain bounded.

The ξ
stat(n)
it ’s need not be white noise and their covariance matrix Σ

(n)
ξ

needs not

be diagonal, whence the terminology “approximate” factor model.
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• This is a semiparametric statistical model, with parameters Bi, i = 1, . . . , n and

nuisance the unspecified distributions of the idiosyncratic process ξ and the

factors. Most people interpret the decomposition into common and

idiosyncratic and the particular form of the common as describing a

data-generating process; some (Bai and Li 2012; Onatski 2012; ... ) even consider

the values of the factors as parameters.

• Chamberlain and Rothschild do not consider the estimation problem for their

approximate static factor model. They do not impose any rate on the

divergence of the eigenvalues of the covariance matrix Σ
(n)
ξ

.
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• Estimation, with additional assumptions on the rate of divergence of the

eigenvalues of covariance matrix Σ
(n)
ξ

and the idiosyncratic cross-correlations, is

considered in Stock and Watson (2002), Bai and Ng (2002), Bai (2003), Bai and

Li (2012), ... who provide a rigorous treatment of the asymptotic properties of

PCA-based estimators for the loadings and the factors of the Chamberlain and

Rothschild model, and show, as expected, that if both n and T tend to infinity,

consistency (up to orthogonal transformations, as usual) is achieved.

• Typically, once factors are extracted via PCA from an n-dimensional (n large)

time series Xt, they are used in a second step to predict a given set of target

variables. This approach, in general, offers sizeable improvements over univariate

or small-n forecasting models.

• To this day, this approximate static factor model remains the most popular tool

in the analysis of high-dimensional time series; it has been used in countless

applications.
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1.2 Geweke (1977), Sargent and Sims (1977), and dynamic loadings

Five years before Chamberlain and Rothschild, Geweke

Geweke, J. (1977), The dynamic factor analysis of economic time series, in: D.J.

Aigner and A.S. Goldberger, Eds., Latent Variables in Socio-Economic Models,

pp. 365–383, Amsterdam: North Holland

shortly followed by Sargent and Sims

Sargent, T.J. and Sims, C.A. (977). Business cycle modeling without pretending to

have too much a priori economic theory, in: C.A. Sims, Ed., New Methods in

Business Cycle Research, pp. 45–109, Federal Reserve Bank of Minneapolis

had understood that, if factor models were to be used in econometrics, the

time-series nature of econometric data could not be ignored.

Their model is

• an exact factor model (idiosyncratic components are mutually orthogonal

white noise)

• with dynamic loadings (the unobserved factors are loaded via filters).
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“Dynamic loadings” here means that the unobserved value fkt of a factor at

time t may be loaded by the observation with some lag (e.g., at time t+ k):

instead of contemporaneous loadings

χstat
t = Bft

via a n× r loading matrix B (static loadings), Geweke considers dynamic

loadings via loading filters B(L)

χ
dyn
t = B(L)ft with B(L) =

∞∑

ν=0

BνL
ν

where B(L) is an n× r matrix of one-sided filters with square-summable entries.

This was an extremely innovative idea.
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On the other hand, Geweke, Sargent, and Sims do not go all the way with taking

into account the time-series nature of the data, as they still assume an exact

factor model, with i.i.d. and mutually orthogonal idiosyncratic components.

This is a terribly strong assumption, which cannot be expected to hold in

econometric data. However, thanks to that assumption, their model is identified

(up to an orthogonal transformation of the factors) and traditional fixed-n

asymptotics can be considered.

• The scope of their exact dynamic factor model, thus, is not high-dimensional.

• As in Chamberlain and Rothschild, the approach is a (semiparametric)

statistical modeling one.
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One also should mention two groups of earlier contributions which considered

extensions of the exact factor model apt to capture specific aspects of the

observed time series:

(I) Engle and Watson (1981), Shumway and Stoffer (1982), Watson and Engle

(1983), and Quah and Sargent (1993) adopted a “state-space approach”

where a parametric dynamic equation for the factors, e.g., a VAR

specification, is added to the static factor model, decomposition;

(II) Peña and Box (1987) and Tiao and Tsay (1989) revisited the exact static

factor model (still assuming the idiosyncratic components to be a

second-order stationary white noise process).

• Approach (I) was extended to the high-dimensional setting n → ∞ by Doz et

al. (2011) who considered the use of the Kalman filter combined with Gaussian

maximum likelihood estimation via the Expectation Maximization algorithm; see

also Barigozzi and Luciani (2022). This approach is among of the most frequently

used in macroeconomic policy analysis; it is employed for now-casting

(Giannone et al. (2008)) and for building indicators of economic activity

(Barigozzi and Luciani (2022)). See also Poncela et al. (2021) for a survey.

• Approach (II) was extended to the high-dimensional setting n → ∞ by Lam et

al., (2011) and Lam and Yao (2012) who still consider

principal-component-based estimation but based on a sum of

autocovariances—under an assumption of white noise idiosyncratic components

which, again, is unlikely to hold in practice.

• All these approaches are semiparametric statistical modeling ones.
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2. The Dynamic: Forni et al. (2000)

The General or Generalized Factor Model (henceforth GDFM) proposed by Forni

et al. (2000) and Forni and Lippi (2001) is combining the dynamic loadings idea

of Geweke (1977) and Sargent and Sims (1977) with the high-dimensional

asymptotics (n, T → ∞) of Chamberlain (1983) and Chamberlain and Rothschild

(1983).

The following presentation is inspired from the time-domain exposition of Hallin

and Lippi (2013), which avoids the spectral-domain approach originally used by

Forni and Lippi (2001) (and considered in Gersing et al. (2024) in the definition of

the GDFM.

Avoiding the spectral -based definition of the GDFM also takes care of the case

of spectral eigenvalues diverging only on a subset of frequencies.
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2.1. The General Dynamic Factor Model

The approach here is entirely nonparametric. The only fundamental assumption

is that the observation, an n× T panel, is the finite realization, for 1 ≤ i ≤ n and

1 ≤ t ≤ T (n and T large), of a double-indexed second-order time-stationary

stochastic process

X := {Xit|i ∈ N, t ∈ Z},

with (for convenience) mean zero—that is, a collection of n centered observed

time series of length T , related to n individuals or “cross-sectional items” or,

equivalently, one single time series in dimension n, observed for t = 1, . . . , T .

Instead of being part of the model specification, the factor model

decomposition into common and idiosyncratic is “endogenous;” no parameters.

Notation

• X
(n)
t the n-dimensional vector (X

(n)
1t , . . . , X

(n)
nt )′,

• Xt the fixed-t collection {Xit|i ∈ N}, and by X(n) the n-dimensional process

{Xit|1 ≤ i ≤ n, t ∈ Z};
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Denote by HX the Hilbert space spanned by X, equipped with the L2

covariance scalar product, that is, the set of all L2-convergent linear

combinations of Xit’s and limits of L2-convergent sequences thereof.

Definition 1. A random variable ζ with values in HX and variance σ2
ζ is called

dynamically common if either

(i) σ2
ζ > 0 and ζ/σζ is the limit in quadratic mean,

as n → ∞, of a sequence of standardized elements of HX of the

form
w

(n)
X

(Var(w
(n)
X

))1/2
, where

w
(n)
X

:=
n∑

i=1

∞∑

k=−∞

a
(n)
ik Xi,t−k with

n∑

i=1

∞∑

k=−∞

(a
(n)
ik )2 = 1

is such that limn→∞ Var(w
(n)
X

) = ∞

or

(ii) σ2
ζ = 0 (hence ζ = 0 a.s.)

Note that this definition does not depend on the choice of t
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Definition 2. Call dynamically common space the Hilbert space HX
dyn com spanned

by the collection of all dynamically common variables in HX; call dynamically

idiosyncratic space its orthogonal complement (with respect to HX)

HX
dyn idio :=

(
HX

dyn com

)⊥
.

Projecting each Xit onto HX
dyn com and its orthogonal complement HX

dyn idio yields

the canonical decomposition

Xit = χdyn

it + ξdyn

it , i ∈ N, t ∈ Z

of Xit into a dynamically common component χdyn

it and a dynamically

idiosyncratic component ξdyn

it , respectively, which are mutually orthogonal at all

leads and lags: the General Dynamic Factor (GDFM) decomosition of X.
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• Note that this decompositions is “endogenous,” always exists, and does not

impose any restriction (beyond second-order stationarity) on the

data-generating process of X. In that sense, it is not a statistical model involving

parameters, but a canonical representation result. Whether it constitutes the

description of a data-generating process or not is irrelevant.

• This representation result nature of the GDFM decomposition (as opposed to

the statistical model nature, in Chamberlain, Rothschild, Stock, Watson, Bai, ... of

the static factor model decomposition) was first emphasized in Forni et al. (2000)

and Forni and Lippi (2001) where, however, a frequency domain approach is

adopted.
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So far, indeed, no assumption has been imposed on the second-order stationary

process X. Adding the requirement that, for any n ∈ N, X(n) admits a spectral

density matrix θ 7→ Σ
(n)(θ), θ ∈ (−π, π] with eigenvalues

λ
(n)
X;1(θ) ≥ λ

(n)
X;2(θ) ≥ . . . ≥ λ

(n)
X;n(θ)

such that

lim
n→∞

λ
(n)
X;q(θ) = ∞ and lim

n→∞
λ
(n)
X;q+1(θ) < ∞, θ-a.e. in (−π, π],

for some finite q ∈ N independent of n, it can be shown (see Hallin and

Lippi (2013)) that

• all {χdyn

it |t ∈ Z}’s are driven by a q-dimensional orthonormal white noise

process {ut = (u1t, . . . , uqt)′|t ∈ Z} of common shocks. The GDFM

decomposition, in that case, takes the form

Xit = χdyn

it + ξdyn

it =:

q∑

i=1

Bi(L)ut + ξdyn

it i ∈ N, t ∈ Z

for some collection Bi(L) := (Bi1(L), . . . , Biq(L)) of linear 1× q

square-summable filters Bij(L), i ∈ N, j = 1, . . . , q. See Hallin and Lippi (2013) for

the relation between the eigenvectors/eigenvalues of the spectral density

matrices Σ(n)(θ) and the loading filters Bi(L).
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• It follows from the above results that the GDFM (loading filters and factors) is

asymptotically identified as n → ∞.

• Forni et al. (2000) show that the common and idiosyncratic components χit

and ξit can be consistently estimated, as n, T → ∞, via dynamic (spectral) PCA,

a technique introduced by Brillinger (2001) which, unfortunately, involves

two-sided filters, hence performs poorly at the ends of the observation

period—making it unsuitable in the context of prediction problems.

• Under the very mild additional assumption of rational spectral densities, Forni,

Hallin, Lippi, and Zaffaroni (2017) show that also the loadings and the factors can

be consistently estimated, as n, T → ∞, via a two-step approach based on an

equivalent autoregressive representation (not described here) derived from the

results by Anderson and Deistler (2008) and Forni, Hallin, Lippi, and Zaffaroni

(2015) on singular stochastic processes. See also the recent results by Barigozzi,

Hallin, Luciani, and Zaffaroni (2023).

• This latter approach only involves one-sided filters, hence allows for

constructing GDFM-based forecasts.

• Forni, Giovannelli, Lippi, and Soccorsi (2018) show that such forecasts improve

over the Stock and Watson (2002a) ones based on the static factor model even

when the assumptions of the static factor model are satisfied.
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2.2. The Static revisited

A representation-based characterization of the approximate static factor

decomposition of Chamberlain and Rothschild also can be obtained instead of

the classical model-based one.

Denoting by HXt the Hilbert space spanned by Xt, consider the following

decomposition of HXt into a statically (at time t) common subspace HXt

stat com

and its orthogonal complement (within HXt ) HXt

stat idio := (HXt

stat com)
⊥

.

Definition 1’. A random variable ζ with values in HXt is called statically (at time t)

common if

(i) its variance σ2
ζ is strictly positive, and ζ/σζ is the limit in quadratic mean,

as n → ∞, of a sequence of standardized elements of HXt of the

form
w

(n)
Xt

(Var(w
(n)
Xt

))1/2
, where

w
(n)
Xt

:=
n∑

i=1

b
(n)
i Xit with

n∑

i=1

(b
(n)
i )2 = 1

is such that limn→∞ Var(w
(n)
Xt

) = ∞

or

(ii) ζ = 0 a.s.
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Definition 2’. Call statically (at time t) common space the Hilbert space HXt

stat com

spanned by the collection of all statically (at time t) common variables in HXt ;

call statically (at time t) idiosyncratic space its orthogonal complement (with

respect to HXt ) HXt

stat idio :=
(
HXt

stat com

)⊥
.

We then have the canonical decomposition

Xit = χstat
it + ξstat

it

where χstat
it and ξstat

it are the projections of Xit on HXt

stat com and HXt

stat idio,

respectively.

• Note that these definitions (HXt , HXt

stat com, HXt

stat idio, ... ), unlike their GDFM

counterparts, depend on t. Orthogonality between the common and the

idiosyncratic commponents, thus, only holds at time t, while in the dynamic case

it holds for all leads and lags.
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Adding the requirement that the eigenvalues

λ
(n)
X;1 ≥ λ

(n)
X;2 ≥ . . . ≥ λ

(n)
X;n

of the n× n covariance matrix of X(n) are such that

lim
n→∞

λ
(n)
X;r = ∞ and lim

n→∞
λ
(n)
X;r+1 < ∞, θ-a.e. in (−π, π]

for some finite r ∈ N independent of n, it can be shown (see Hallin and

Lippi (2013)) that HXt

stat com admits r-dimensional orthonormal bases

ft = (f1t, . . . , fqt)′, any of which can be considered as a r-tuple of factors,

yielding a Chamberlain and Rothschild approximate static factor decomposition

with χstat
it = Bift.

• These factors, in turn, are driven by a q-dimensional orthonormal white noise

process {ut = (u1t, . . . , uqt)′|t ∈ Z} of q ≤ r common shocks.

• If, however, consistent PC-based estimation is to be performed, additional

constraints on ξstat
it are necessary (see Stock, Watson, Bai, Bai and Ng, etc.)—in

sharp contrast with the GDFM case where no additional assumption is required.
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3. The Weak

The concept of weak factors appear in various places in the literature with,

however, diverse meanings.

(a) Statically rate-weak factors (De Mol et al. (2008); Onatski (2012); ... ) in

static factor models are related with covariance eigenvalues diverging at

sublinear rate (usually, nα with α < 1). Superstrong factors could be

defined similarly in case of superlinear divergence rates. Although they

have not been considered in the literature so far, dynamically rate-weak

factors can be defined similarly from the eigenvalues of spectral density

matrices.

(b) The same terminology is used by Hallin and Lǐska (2011) in the context of

panels divided into subpanels or blocks where weak factors are common

in some block(s) and idiosyncratic in some other(s) (in a dynamic

approach). Such weak factors can be rate-weak, -strong, or -superstrong.

(c) Finally, a recent arXiv post (“Weak factors are everywhere”) by Gersing,

Rust, and Deistler (2023) defines weakly common components as the

difference (at time t) between the dynamically common and the

statically common components of Xit, and weakly common factors. Any

(possibly infinite-dimensional) orthonormal basis of the space they are

spanning can be considered a weak factor but this bears no relation to

(a) and (b) above.
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3.1. Weak factors: De Mol, Giannone, and Reichlin (2008); Onatski (2012)

A (static) factor is weak in the sense of (a)—“rate-weak” or “weakly influential” if

the corresponding loadings, as n → ∞, are too small, or too sparse, for the

corresponding eigenvalues to diverge at rate n.

As a consequence, such weak factors are not consistently detected by the

PC-based identification methods (Bai and Ng 2002; Alessi, Barigozzi, and

Capasso 2010, ... ) and are not consistently recovered by the classical PC-based

estimation methods. These factors, thus, as pointed out by

Onatski, A. (2012). Asymptotics of the principal components estimator of large

factor models with weakly influential factors. Journal of Econometrics 168,

244–258,

are an unpleasant grain of sand in the gears of static factor model methods.

The same concept had been considered, in a different perspective, by

De Mol, Giannone, and Reichlin (2008). Forecasting using a large number of

predictors: Is Bayesian shrinkage a valid alternative to principal components?”

Journal of Econometrics 146, 318–328.

Since then, an abundant literature has considered the case of divergence rates

nαk with 0 < αk < 1 for the kth factor: see Bai and Ng (2021),

Freyaldenhoven (2022), etc.
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3.2. “Weak factors are everywhere”: Gersing, Rust, and Deistler (2023)

With an intriguing title “Weak factors are everywhere” (arXiv:2307.10067v2),

Gersing, Rust, and Deistler (2023) are aiming at “reconcile” the Static and the

Dynamic by showing that the static factor space HXt

stat com, for any t, is a subspace

of the dynamic factor space HX
dyn com.

Accordingly, they propose a new canonical factor decomposition of the form

ξstat
it

Xit = χstat
it

︸ ︷︷ ︸
+

︷ ︸︸ ︷

χweak
it + ξdyn

it

χdyn

it

where χweak
it is the difference between χdyn

it and χstat
it , which they call the weakly

common component of X at time t.

This is a very ingenious idea, which shows how the Dynamic factor model is

overarching the Static one.
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ξstat
it

Xit = χstat
it

︸ ︷︷ ︸
+

︷ ︸︸ ︷

χweak
it + ξdyn

it

χdyn

it

• In this new canonical decomposition, χweak
it , being in the dynamically common

space HX

dyn com, is orthogonal, all leads and lags, to the dynamically idiosyncratic

component ξdyn

it ; being in the statically idiosyncratic space at time t, it is also

orthogonal to the statically common component at time t χstat
it (but not its leads

and lags).

• Since χweak
it belongs to the dynamically common space HX

dyn com but not to the

statically common space HX

stat com, it consists of non-pervasive lagged values of

the dynamic factors, or combinations thereof.

• This concept of weakly common component, however, is unrelated to the

concept of “statically rate-weak factor” as initially developed in De Mol et

al. (2008) and Onatski (2012) (actually, χweak
it cannot be a static factor, neither

strong nor weak). Although the Gersing et al. weak common components “are

everywhere,” they are not not “rate-weak factors” in the sense of (a), nor linear

combinations thereof ...
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3.3. Weak factors in panels with block structure.

Panels with block structure are (n× T ) panels divided into K (nk × T ) subpanels

with n = n1 + . . . , nK : see Hallin and Lǐska (2011).

There, a (dynamic/static) factor which is rate-strong in a block k0 can be globally

rate-weak if the dimension nk0
of the block is such that nk0

/n → 0.

There is no obvious reason, however, to adopt an asymptotic scenario in which

this happens. That asymptotic scenario, indeed, is a mathematical fiction aiming

at a good approximation of the actual finite-dimensional observation.
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3.3. Weak factors are nowhere: exchangeability

While the Gersing-et-al.-weak components χweak
it are taken care of by

considering the dynamic rather than the static approach, the problem with

(statically) rate-weak factors remains and, in practice, they typically will be

swallowed into the idiosyncratic components.

But, do we really need that concept of rate-weak factors?

An all too often neglected property of panel data is that the cross-sectional

ordering is entirely arbitrary (e.g., alphabetical ordering of cross-sectional items)

and should not have any impact on the analysis.

• A panel, actually, is the equivalence class of all its n! cross-sectional

permutations.

• Let us show that this rules out the presence of rate-weak (but also

rate-superstrong) factors, be they static or dynamic: rate-weak factors are

nowhere!
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One panel, three cross-sectional orderings
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Recall that, under our fully nonparametric approach (no parameters), the only

assumption we need in order to obtain a factor model decomposition is that the

observed panel is the finite (n× T ) realization of a second-order stationary

process of the form
{
Xit : i ∈ N, t ∈ Z

}
.

The mathematical translation of the irrelevance of the cross-sectional ordering is

cross-sectional exchangeability.

The stochastic process
{
Xit : i ∈ N, t ∈ Z

}
is cross-sectionallly exchangeable if for

any k ∈ N, any k-tuple i1, . . . , ik, and any permutation π of the integers (1, . . . , k),

the k-dimensional stochastic processes

{
(Xi1t, . . . , Xikt) : t ∈ Z

}
and

{
(Xiπ(1)t, . . . , Xiπ(k)t) : t ∈ Z

}

are equal in distribution.

That assumption of exchangeability has been used in Barigozzi, Hallin, Luciani,

and Zaffaroni (2023) [Inferential theory for generalized dynamic factor models,

Journal of Econometrics] in order to obtain asymptotic distributional results for

the GDFM estimators.
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Under this additional assumption of exchangeability, the data-generating

process can be seen as a two-step process:

(i) a finite (n× T ) realization of {Xit}, arbitrarily cross-sectionally ordered

(following some arbitrary but fixed “alphabetical order”), yielding a

sequence of increments δν := λ
(ν)
1 − λ

(ν−1)
1 , ν = 1, . . . , n (letting λ

(0)
1 := 0)

of the first eigenvalue of the nested ν × ν covariance matrices ΣX1,...,Xν
;

(ii) a random cross-sectional permutation π of the same (π uniform over the

n! possible permutations of (1, . . . , n)), with nested ν × ν covariance

matrices Σ(X
π−1(1)

,...,X
π−1(ν)

), yielding a sequence δπν = δπ−1(ν) of their

first eigenvalue increments.

• δν is the contribution of cross-sectional item ν to λ
(n)
1

• the sequence δπν is a permutation of the sequence δν and

n∑

ν=1

δπ−1(ν) =
n∑

ν=1

δν = λ
(n)
1

• due to exchangeability, E[δν ] =: δ does not depend on ν; hence,

E[λ
(n)
1 ] = nδ,

which precludes non-linear growth of [λ
(n)
1 .

• The same resoning holds for λ
(n)
1 , λ

(n)
2 , etc., as well as for dynamic eigenvalues.
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Under cross-sectional exchangeability, if λn is a diverging eigenvalue,

E[λn] = nE[λ1] is linear in n

Note that if λn is a bounded eigenvalue, E[λn] = E[λ1] is a constant.
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3.4. Undetected strong factors: “don’t throw out the baby with the bathwater!”

Onatski (2012)’s justification for considering rate-weak factors, however, is more

subtle. His claim is that weak-factor asymptotics provide a better approximation

in a finite-(n, T ) situation where the smallest linearly divergent eigenvalues do not

separate well from the bulk of bounded eigenvalues. He does not require, thus,

the presence of a “genuinely rate-weak factor,” but uses rate-weak asymptotics

as a tool for the detection and estimation of these hardly detectable strong

factors.

One may wonder whether this is worth the effort. Identifying such hardly

detectable factors and incorporating them in the common space, indeed, is of

limited importance—provided, however, that factor models are not considered

as a dimension-reduction technique.
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Whether static or dynamic, undetected strong factors, indeed, are not lost, but

wrongly left in the idiosyncratic space.

In a dimension-reduction perspective, the common component χit is

considered a (more tractable, being reduced rank) approximation of the

high-dimensional observation Xit. The idiosyncratic ξit then is discarded as if it

were an error term (a regrettable terminology used by many authors—not to

mention those who impose white noise assumptions on it).

But ξit, typically, is not an error term! It need not be small, may be strongly

autocorrelated, and may have high predictive value for Xit. And its empirical

version may contain undetected (strong, but weakly influential) factors.

Rather than a dimension reduction technique, factor models, thus, should be

considered a “divide and conquer” procedure where the common and the

idiosyncratic are analyzed via distinct appropriate methods. The resulting

analyses, at the end of the day, are to be brought back together: for instance,

once forecasts χ̂it and ξ̂it of the common and the idiosyncratic have been

obtained, their sum χ̂it + ξ̂it should be used in forecasting Xit.

Because cross-correlations in the idiosyncratic component, are mild, little is lost if

componentwise or sparse time-series techniques are implemented instead of

(untractable) high-dimensional ones.
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Now,

• Undetected factors remain undetected because their empirical finite-(n,T )

cross-correlations are small.

• the advantage of detecting such factors and incorporating them into the

common component is that their, t cross-correlationshere, would be

exploited—which they are not in a componentwise or sparse analysis of the

idiosyncratic.

• Since these cross-correlations are small, that advantage is small, too.

Provided that the idiosyncratic is not discarded, thus, the problem of undetected

factors is not a crucial one.
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4. Conclusions

(i) The Dynamic approach is nesting the Static one;

(ii) under the (natural) assumption of exchangeability, rate-weak factors,

whether static or dynamic, “are nowhere”

(iii) Gersing-Rust-Deistler -weak factors “are everywhere”, but are taken into

account in the Dynamic approach—which explains the empirical finding

that the Dynamic approach outperforms the Static one even when the

assumptions of the static model are satisfied;

(iv) factor models are not a dimension-reduction technique and the

idiosyncratic component (which is not an error term) should not be

discarded, as it may be large and have high predictive power; in

particular, it may contain undetected factors; componentwise or sparse

analyses are in order;

(v) undetected factors, then, are not a crucial problem.

(vi) These conclusions are likely to extend to matrix- and tensor-valued factor

models, and to spatio-temporal ones, where, however, a dynamic

approach still needs to be developed.
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