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Abstract

For any given integer N ≥ 2, we show that every bounded measurable vector field from a bounded
domain Ω into Rd is N -cyclically monotone up to a measure preserving N -involution. The proof involves
the solution of a multidimensional symmetric Monge-Kantorovich problem, where the cost function on
the product domain ΩN is given by the vector field (actually N−1 of them). We show that the supremum
over all probability measures on ΩN which are invariant under cyclic permutations and with a given first
marginal µ, is attained on a probability measure that is supported on the graph of a function of the form
x → (x, Sx, S2x, ..., SN−1x), where S is a µ-measure preserving transformation on Ω such that SN = I
a.e. The proof exploits a remarkable duality between such involutions and those Hamiltonians that are
N -cyclically antisymmetric.

1 Introduction

Given a probability measure µ on a domain Ω in Rd, that is absolutely continuous with respect to Lebesgue
measure, and a bounded above upper semi-continuous cost function c(x1, x2, ..., xN ) on ΩN , we consider the
following symmetric Monge-Kantorovich problem

MK1
sym(c) = sup

{∫
ΩN

c(x1, x2, ..., xN )dπ; π ∈ Psym(ΩN , µ)

}
(1)

where Psym(ΩN , µ) denotes the set of all probability measures on ΩN , whose marginals are equal to µ and
which are invariant under the cyclical permutation

σ(x1, x2, ..., xN ) = (x2, x3, ..., xN , x1).

In other words, π ∈ Psym(ΩN , µ) if∫
ΩN

f(x1, x2, ..., xN )dπ =
∫

ΩN
f(σ(x1, x2, ..., xN ))dπ for every f ∈ C(ΩN ), (2)

and ∫
ΩN

f(xi)dπ =
∫

Ω
f(xi)dµ for every f ∈ C(Ω). (3)

Standard results show that there exists π0 ∈ Psym(ΩN , µ) where the supremum above is attained. In
this paper, we are interested in an important class of cost functions c, where the optimal measure π0 is
necessarily supported on the graph of a function of the form x → (x, Sx, S2x, ..., SN−1x), where S is a
µ-measure preserving transformation on Ω such that SN = I a.e.
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If c is finite, then one can extend the original approach of Kantorovich to the multi-marginal and cyclically
symmetric case to show that (1) is dual to the following minimization problem

DK1
sym(c) := inf

{
N

∫
Ω

u(x) dµ; u : Ω→ R and

N∑
j=1

u(xj) ≥
1

N

N−1∑
i=0

c(σi(x1, . . . , xN ))

}
. (4)

In this paper, we introduce a new dual problem based on the class HN (Ω) of all N -cyclically antisymmetric
Hamiltonians on ΩN , that is

HN (Ω) = {H ∈ C(ΩN ;R);
∑N−1
i=0 H

(
σi (x)

)
= 0 for all x ∈ ΩN}. (5)

We shall say that H is N -sub-antisymmetric on Ω if

N−1∑
i=0

H(σi(x1, ..., xN )) ≤ 0 on ΩN . (6)

For H ∈ HN (Ω), we let `
c

H be the “c-Legendre transform” of H with respect to the last (N − 1) variables,
i.e.,

`
c

H(x) = sup
{
c(x, x2, ..., xN )−H (x, x2, ..., xN ) ; (x2, ..., xN ) ∈ ΩN−1

}
,

and consider the problem

DK2
sym(c) := inf

{∫
Ω

`cH(x)dµ(x); H ∈ HN (Ω)

}
. (7)

Since
∫

Ω
H(x1, x2, ..., xN ) dπ ≤ 0 for each H ∈ HN (Ω) and any symmetric probability π on ΩN , we have for

each π ∈ Psym(ΩN , µ)∫
ΩN

c(x1, x2, ..., xN )dπ ≤
∫

ΩN
[c(x1, x2, ..., xN )−H(x1, x2, ..., xN )] dπ ≤

∫
Ω

`cH(x1) dµ(x1),

and therefore MK1
sym(c) ≤ DK2

sym(c).
Of great interest is to determine for which cost functions c, there is no duality gap, that is

MK1
sym(c) = DK1

sym(c) = DK2
sym(c). (8)

In this paper, we shall focus on cost functions on ΩN of the form

c(x1, x2, ..., xN ) = 〈u1(x1), x2〉+ ....〈uN−1(x1), xN 〉, (9)

where u1, ..., uN−1 are given vector fields from Ω to Rd. In this case,

`H(x) = sup
{
〈u1(x), x2〉+ ....〈uN−1(x), xN 〉 −H(x, x2, ..., xN ); (x2, ..., xN ) ∈ ΩN−1

}
,

which means that `H is essentially the standard Lagrangian associated to H (i.e., Legendre transform of H
with respect to the last N − 1-variables) and

`H(x) = LH(x, u1(x), u2(x), ..., uN−1(x)),

where for (x, p1, ..., pN−1) ∈ (Rd)N ,

LH(x, p1, ..., pN−1) = sup{
N−1∑
i=1

〈pi, yi〉 −H(x, y1, ..., yN−1); yi ∈ Ω}.

We are also interested in the “extremal” probability measure in Psym(ΩN , µ), which are images of µ by maps
of the form x→ (x, Sx, S2x, ..., SN−1x), where S is a µ-preserving transformation such that SN = I, µ a.e.
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For that, we consider the set S(Ω) of measure preserving transformations on Ω, which can be considered as
a closed subset of the sphere of L2(Ω,Rd) and set

SN (Ω) = {S ∈ S(Ω), SN = I a.e.}

The set SN (Ω) has been shown recently in [3] to be polar to the class of N -cyclically monotone vector fields,
which are those u : Ω→ Rd that satisfy for every cycle x1, ..., xN , xN+1 = x1 of points in Ω, the inequality

N∑
i=1

〈u (xi) , xi − xi+1〉 ≥ 0. (10)

The following theorem, which is the main result of this paper points –among other things– to the close
connection between these four fundamental notions of modern analysis.

Theorem 1.1 Given (N−1) bounded vector fields u1, u2, ...., uN−1 from Ω to RN , and a probability measure
µ on Ω that is absolutely continuous with respect to Lebesgue measure, we consider the following variational
problems:

MK : = sup{
∫

ΩN
[〈u1(x1), x2〉+ ....〈uN−1(x1), xN 〉] dπ;π ∈ Psym(ΩN , µ)} (11)

DK : = inf{
∫

Ω

LH(x, u1(x), u2(x), ..., uN (x)) dµ(x);H ∈ HN (Ω)}. (12)

MK′ : = sup{
∫

ΩN

[
〈u1(x), Sx〉+ 〈u2(x), S2x〉+ ....〈uN−1(x), SN−1x〉

]
dµ; S ∈ SN (Ω)}. (13)

If meas(∂Ω) = 0, then the following holds:

1. MK=DK=MK’.

2. MK’ is attained at some S ∈ SN (Ω), which means that MK is attained at an invariant measure πS
that is the image of µ by the map x→ (x, Sx, S2x, ..., SN−1x).

3. There exists a function H on RdN that is concave in the first variable, convex in the last (N − 1)
variables and N -sub-antisymmetric on Ω, such that

(u1(x), ..., uN−1(x)) ∈ ∂2,...,NH(x, Sx, ..., SN−1x) a.e. x ∈ Ω. (14)

Moreover, if either ui ∈W 1,1
loc (Ω) for i = 1, 2, ..., N − 1 or if S is differentiable a.e., then there exists a

N -cyclically antisymmetric Hamiltonian H ∈ HN (Ω) such that

(u1(x), ..., uN−1(x)) = ∇2,...,NH(x, Sx, ..., SN−1x) a.e. x ∈ Ω. (15)

4. Assume that for any two families of points x1, ..., xN and y1, ..., yN in Ω, the function

x→
N−1∑
i=1

〈ui(x), yi − xi〉+

N−1∑
i=1

〈ui(yN−i)− ui(xN−i), x〉

has no critical point unless when x1 = y1. Then there exists a unique measure preserving N -involution
S such that (15) holds for some concave-convex N -sub-antisymmetric Hamiltonian H.

If u : Ω→ Rd is a single bounded vector field, then the above theorem applied to the family (0, ..., 0, u) yields
the decomposition

(−u(Sx), 0, ..., 0, u(x)) = ∇H(x, Sx, ..., SN−1x) a.e. x ∈ Ω. (16)

If S is the identity in the above representation, it is then easy to see that u is N -cyclically monotone, which
means that the above theorem essentially says that any bounded vector field is N -cyclically monotone up
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to a measure preserving N - involution. This is clearly in the same spirit as Brenier’s theorem stating that
any non-degenerate vector field is the gradient of a convex function (i.e., is N -cyclically monotone for all
N) modulo a measure preserving transformation. Note that the representation of 2-monotone operators as
partial gradients of antisymmetric saddle functions was established by Krause [9]. The general version of this
result was established in [8] where it is shown that any bounded vector field is 2-monotone up to a measure
preserving involution. Theorem 1.1 can be see as an extension of this result to the case where N ≥ 2 and
where there is more than one vector field.

Actually, in the case of a single vector field u : Ω → Rd, one need not consider Hamiltonians on ΩN as
long as the requirement of N -antisymmetry is replaced by the following property: Say that a function F on
Rd × Rd is N -cyclically sub-antisymmetric on Ω, if

F (x, x) = 0 and
N∑
i=1

F (xi, xi+1) ≤ 0 for all cyclic families x1, ..., xN , xN+1 = x1 in Ω. (17)

Note that if a function H(x1, ..., xN ) is N -sub-antisymmetric and if it only depends on the first two variables,
then the function F (x1, x2) := H(x1, x2, ..., xN ) is N -cyclically sub-antisymmetric.

Our proof then yields the following result.

Theorem 1.2 Consider a vector field u ∈ L∞(Ω,Rd), then:

1. For every N ≥ 2, there exists a measure preserving N -involution S on Ω and a globally Lipschitz
concave-convex function F of Rd × Rd that is N -cyclically sub-antisymmetric on Ω, such that

(−u(Sx), u(x) ∈ ∂F (x, Sx) for a.e. x ∈ Ω, (18)

where ∂H is the sub-differential of H as a concave-convex function [13].

2. If either u ∈W 1,1
loc (Ω) or if S is differentiable a.e., then

u(x) = ∇2F (x, Sx) for a.e. x ∈ Ω. (19)

3. Moreover u is strictly N -cyclically monotone on Ω if and only if S = I in the representation (19).

Remark 1.3 Note that we cannot expect to have a function F such that
N∑
i=1

F (xi, xi+1) = 0 for all cyclic

families x1, ..., xN , xN+1 = x1 in Ω. This is the reason why one needs to consider functions of N -variables
in order to get N -antisymmetry as opposed to sub-antisymmetry. Note that the function defined by

H(x1, x2, ..., xN ) :=
(N − 1)F (x1, x2)−

∑N−1
i=2 F (xi, xi+1)

N
, (20)

is N -antisymmetric in the sense of belonging to HN (Ω) and H(x1, x2..., xN ) ≥ F (x1, x2) on ΩN .

2 Duality between monotonicity, cyclical symmetry and involu-
tions

We first state here a recent result of Galichon-Ghoussoub [3], which establishes the remarkable dual-
ity between N -cyclically monotone operators, N -antisymmetric Hamiltonians and measure preserving N -
involutions. These dualities originated in the work of Krause on monotone operators (i.e., when N = 2)
and the celebrated result of Brenier on the Monge transportation problem. The following notion considered
recently by Galichon-Ghoussoub [3] turned out to be the appropriate extension to when N ≥ 3.

Definition 2.1 A family of vector fields u1, u2, ..., uN−1 from Ω → Rd is said to be jointly N -monotone if
for every cycle x1, ..., x2N−1 of points in Ω such that xN+l = xl for 1 ≤ l ≤ N − 1, we have

N∑
i=1

N−1∑
l=1

〈ul(xi), xi − xi+l〉 ≥ 0. (21)
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Note that if each u` is N -cyclically monotone, then the family (u1, u2, ..., uN−1) is jointly N -monotone.
Actually, one needs much less, since the (N − 1)-tuplet (u, u, ..., u) is jointly N -monotone if and only if u is
2-monotone. On the other hand, (u, 0, 0, ..., 0) is jointly N -monotone if and only if u is N -monotone. See [3]
for a complete discussion.

Theorem 2.2 (Galichon-Ghoussoub) Let u1, ..., uN−1 : Ω → Rd be bounded measurable vector fields. The
following properties are then equivalent:

1. The family (u1, ..., uN−1) is jointly N -monotone a.e., that is there exists a measure zero set Ω0 such
that (u1, ..., uN−1) is jointly N -monotone on Ω \ Ω0.

2. The family (u1, ..., uN−1) is in the polar of SN (Ω, µ) in the following sense,

inf

{∫
Ω

N−1∑
`=1

〈u`(x), x− S`x〉 dµ;S ∈ SN (Ω, µ)

}
= 0. (22)

3. There exists a N -sub-antisymmetric Hamiltonian H which is concave in the first variable, convex in
the last (N − 1) variables such that

(u1(x), ..., uN−1(x)) = ∇2,...,NH(x, x, ..., x) for a.e. x ∈ Ω. (23)

Moreover, H is N -cyclically antisymmetric in the following sense: For a.e. x = (x1, ..., xN ) ∈ ΩN , we
have

H(x1, x2, ..., xN ) +H2,...,N (x1, x2, ..., xN ) = 0

where H2,...,N is the concavification of the function K(x) =
N−1∑
i=1

H(σi(x)) with respect to the last N −1

variables.

Note that (22) shows that the above is also equivalent to the statement that

sup{
∫

ΩN

N−1∑
`=1

〈u`(x1), x`+1〉dπ(x); π ∈ Psym(ΩN , µ)} =

∫
Ω

N−1∑
`=1

〈u`(x), x〉 dµ(x), (24)

and that the supremum is attained at the image of µ by the map x → (x, x, ..., x), which is nothing but
a particular case of the symmetric Monge-Kantorovich problem, when the cost function is the one we are
considering in (9) and when the family (u1, ..., uN−1) is N -monotone. Theorem 1.1 now appears as the
extension of the above to an arbitrary family of (N − 1) vector fields.

At the heart of our results, is the fact that the duality between N -antisymmetric Hamiltonians and
measure preserving N -involutions can be significantly strengthened from the one noted in [3]. The following
lemma will be crucial to what follows.

Lemma 2.3 Let S1, S2, ..., SN−1 be µ-measurable maps on Ω. The following statements are then equivalent:

1.
∫

Ω
H(x, S1x, S2x, ..., SN−1x)dµ(x) = 0 for every N -cyclically antisymmetric Hamiltonian H.

2. There exists a µ-measure preserving transformation S : Ω→ Ω, such that SN = I and Si = Si for all
i = 1, ..., N − 1.

Proof: If S is µ-measure preserving and SN = I a.e., then∫
Ω

H(x, Sx, S2x, ...SN−1x)dµ =

∫
Ω

H(Sx, S2x, ...SN−1x, x)dµ(x) = ... =

∫
Ω

H(SN−1x, ..., S2x, x, Sx)dµ(x)

Since H is N -antisymmetric, then

H(x, Sx, S2x, ...SN−1x) +H(Sx, S2x, ...SN−1x, x) + ...H(SN−1x, ..., S2x, x, Sx) = 0.
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It follows that N
∫

Ω
H(x, Sx, S2x, ...SN−1x)dµ = 0.

For the reverse implication, assume
∫

Ω
H(x, S1x, S2x, ..., SN−1x)dµ(x) = 0 for every N -cyclically anti-

symmetric Hamiltonian H. By using the identity with Hamiltonians (Hi)
N
i=1 of the form

Hi(x1, x2, ..., xN ) := f(x1)− f(xi)

where f is any continuous function on Ω, one gets that Si is measure preserving for each i = 1, ..., N − 1.
Now take for each fixed i = 1, ..., N , the Hamiltonian

Hi(x1, x2, ..., xN ) := |xi − Si1xN | − |Si1x1 − xi+1| − |xi+1 − Si1x1|+ |Si1x2 − xi+2|.

Note that Hi ∈ H for each i, since it is of the form Hi(x1, ..., xN ) = f(x1, xi, xi+1, xN )−f(x2, xi+1, xi+2, x1).
Now apply the idendity for each Hi to obtain,

0 =

∫
Ω

Hi(x, S1x, S2x, ..., SN−1x)dµ(x) = 0 =

∫
Ω

|Si−1x− Si1SN−1| dµ+

∫
Ω

|Si1S1x− Si+1x| dµ = 0.

It follows that Si+1 = Si+1
1 and Si−1x = Si1SN−1 for each i = 1, ..., N . The latter applied to i = 1, yields

x = S1SN−1x = S1S
N−1
1 x = SN1 x, and we are done.

3 Regularization of N-sub-antisymmetric functions

Let Ω be a bounded domain in Rd, and consider the class

H
−

N (Ω) :=
{
H ∈ C(Ω̄N );

N−1∑
i=0

H(σi(x)) ≤ 0 for all x ∈ ΩN}. (25)

For each H ∈ H−N (Ω), we associate the following functional on Ω× (Rd)N−1,

LH(x, p1, ..., pN−1) = sup

{
N−1∑
i=1

〈pi, yi〉 −H(x, y1, ..., yN−1); yi ∈ Ω

}
. (26)

Denote by

L−(N) = {LH ;H ∈ H
−

N (Ω)}.

Our plan is to show that one can associate to H,

• a globally Lipschitz-continuous function H1
reg ∈ L−(N) that is concave in the first variable, convex in

the last (N − 1) variables such that LH1
reg
≤ LH .

• a globally Lipschitz-continuous function H2
reg ∈ L(N) such that H2

reg ≥ H1
reg and hence LH2

reg
≤

LH1
reg
≤ LH .

Suppose that Ω is contained in a ball BR centered at the origin with radius R > 0 in Rd, we shall define
“an (Ω̄×BR) restricted Legendre transform” of LH as

L∗H(p1, ..., pN−1, , x) = sup
q∈Ω̄,yi∈BR

{
〈q, x〉+

N−1∑
i=1

〈pi, yi〉 − LH(q, y1, y2, ..., yN−1)

}
.

Similarly, we define on Rd × (Rd)N−1,

L∗∗H (x, p1, ..., pN−1) = sup
p∈Ω̄,xi∈BR

{
〈x, p〉+

N−1∑
i=1

〈pi, xi〉 − L∗H(x1, ..., xN−1, p)

}
. (27)
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For any function L : Rd × (Rd)N−1 → R, we shall define its “BR-Hamiltonian” by

HL(x, y1, ..., yN−1) = sup
pi∈BR

{
N−1∑
i=1

〈pi, yi〉 − L(x, p1, ..., pN−1)

}
. (28)

Finally, for each H ∈ H−N (Ω), we define the following two regularizations of H by

H1
reg(x) = HL∗∗H

(x), (29)

and

H2
reg(x) =

(N − 1)H1
reg(x)−

∑N−1
i=1 H1

reg(σ
i(x))

N
. (30)

We list some of the properties of H1
reg, H

2
reg, L

1
Hreg

and L1
Hreg

.

Proposition 3.1 If H ∈ H−N (Ω), then the following statements hold:

1. H1
reg is a concave-convex on Rd × Rd(N−1) whose restriction to Ω̄N belong to H−N (Ω).

2. H2
reg belongs to HN (Ω), and H2

reg ≥ H1
reg on Ω̄N .

3. LH1
reg

is convex and continuous in all variables and LH2
reg
≤ LH1

reg
≤ LH on Ω̄× (BR)N−1.

4. |LH1
reg

(x, p1, ..., pN−1)| ≤ R‖x‖+R
N−1∑
i=1

‖pi‖+ (2N + 1)R2 for all x and all (pi)
N−1
i=1 in Rd.

5. |H1
reg(x, y1, ..., yN−1)| ≤ R‖x‖+R

N−1∑
i=1

‖yi‖+ 2NR2 for all x and all (yi)
N−1
i=1 in Rd.

6. LH2
reg

and H2
reg are both Lipschitz continuous with Lipschitz constants less than 4NR.

The proof will require several lemmas.

Lemma 3.1 With the above notation, we have the following properties:

1. L∗∗H (x, p1, ..., pN−1) ≤ LH(x, p1, ..., pN−1) for x ∈ Ω̄ and pi ∈ Rd for i = 1, ..., N − 1.

2. If H1
reg denotes HL∗∗H

, then H1
reg is concave in the first variable and convex in the last (N−1) variables.

3. LH1
reg

is jointly convex in all variables.

Proof. 1) For x ∈ Ω̄ and pi ∈ Rd, i = 1, ..., N − 1, we have we have

L∗∗H (x, p1, ..., pN−1) = sup
q∈Ω̄,ri∈BR

{
〈x, q〉+

N−1∑
i=1

〈pi, ri〉 − L∗H(r1, ..., rN−1, q)

}

= sup
q∈Ω̄,ri∈BR

{
〈x, q〉+

N−1∑
i=1

〈pi, ri〉 − sup
y∈Ω̄,yi∈BR

{〈y, q〉+

N−1∑
i=1

〈ri, yi〉 − LH(y, y1, ..., yN−1)}

}

= sup
q∈Ω̄,ri∈BR

inf
y∈Ω̄,yi∈BR

{
〈x, q〉+

N−1∑
i=1

〈pi, ri〉 − 〈y, q〉 −
N−1∑
i=1

〈ri, yi〉+ LH(y, y1, ..., yN−1)

}

= sup
q∈Ω̄,ri∈BR

inf
y∈Ω̄,yi∈BR

{
〈q, x− y〉+

N−1∑
i=1

〈pi − yi, ri〉+ LH(y, y1, ..., yN−1)

}

= sup
q∈Ω̄,ri∈BR

inf
y∈Ω̄,yi∈BR

{
〈q, x− y〉+

N−1∑
i=1

〈pi − yi, ri〉+ sup
ti∈Ω
{
N−1∑
i=1

〈ti, yi〉 −H(y, t1, ..., tN−1)}

}

= sup
q∈Ω̄,ri∈BR

inf
y∈Ω̄,yi∈BR

sup
ti∈Ω

{
〈q, x− y〉+

N−1∑
i=1

〈pi − yi, ri〉+

N−1∑
i=1

〈ti, yi〉 −H(y, t1, ..., tN−1)

}

= inf
y∈Ω̄,yi∈BR

sup
q∈Ω̄,ri∈BR

sup
ti∈Ω

{
〈q, x− y〉+

N−1∑
i=1

〈pi − yi, ri〉+

N−1∑
i=1

〈ti, yi〉 −H(y, t1, ..., tN−1)

}
.
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By taking y = x and yi = pi, we readily get that L∗∗H (x, p1, ..., pN−1) ≤ LH(x, p1, ..., pN−1).

For 2) note first that by definition

HL∗∗(x, y1, ..., yN−1) = sup
pi∈BR

{
N−1∑
i=1

〈pi, yi〉 − L∗∗H (x, p1, ..., pN−1)

}
,

and therefore for all x ∈ Rd, the function (y1, ..., yN−1) → HL∗∗(x, y1, ..., yN−1) is convex. We shall show
that for all (y1, ..., yN−1) ∈ (Rd)N−1, the function x→ HL∗∗(x, y1, ..., yN−1) is concave. In fact we show that

x→ −HL∗∗(x, y1, ..., yN−1) = inf
pi∈BR

{L∗∗H (x, p1, ..., pN−1)−
N−1∑
i=1

〈pi, yi〉}

is convex. Indeed, consider λ ∈ (0, 1) and elements x1, x2 ∈ Rd, then for any a, b such that

a > −HL∗∗(x1, y1, ..., yN−1) and b > −HL∗∗(x2, y1, ..., yN−1),

we can find (ri)
N−1
i=1 and (qi)

N−1
i=1 in (Rd)N−1 such that

−HL∗∗(x1, y1, ..., yN−1) ≤ L∗∗H (x1, r1, ..., rN−1)−
N−1∑
i=1

〈ri, yi〉 ≤ a,

and

−HL∗∗(x2, y1, ..., yN−1) ≤ L∗∗H (x2, q1, ..., qN−1)−
N−1∑
i=1

〈qi, yi〉 ≤ b.

Use the convexity of the ball BR and the convexity of the function L∗∗H in both variables to write

−HL∗∗H
(λx1 + (1− λ)x2, y1, ..., yN−1) = inf

pi∈BR
{L∗∗H (λx1 + (1− λ)x2, p1, ..., pN−1)−

N−1∑
i=1

〈pi, yi〉}

≤ L∗∗H (λx1 + (1− λ)x2, λr1 + (1− λ)q1, ..., λrN−1 + (1− λ)qN−1))

−
N−1∑
i=1

〈λri + (1− λ)qi, yi〉

≤ λ
(
L∗∗H (x1, r1, ..., rN−1)−

N−1∑
i=1

〈ri, yi〉
)

+(1− λ)
(
L∗∗H (x2, q1, ..., qN−1)−

N−1∑
i=1

〈qi, yi〉
)
}

≤ λa+ (1− λ)b,

which establishes the concavity of x → HL∗∗H
(x, y1, ..., yN−1). It then follows that LH1

reg
= LHL∗∗

H
is convex

in all variables that proves part 3).

Lemma 3.2 If H ∈ H−N (Ω), then H1
reg ∈ H

−

N (Ω).

Proof. Let i, j = 1, 2, .., N . We first show that

N∑
i=1

{ N∑
j=1,j 6=i

〈pij , xj〉 − L∗∗H (Ri−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N ))
}
≤ 0, (31)

for all xi ∈ Ω and pij ∈ Rd.
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We have

LH(σi−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N )) = sup


N∑

j=1,j 6=i

〈pij , yj〉 −H(σi−1(y1, ..., yi−1, xi, yi+1, ..., yN )); yj ∈ Ω


≥

N∑
j=1,j 6=i

〈pij , xj〉 −H(σi−1(x1, x2, ..., xn)).

Taking summation over i implies that

N∑
i=1

LH(σi−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N )) ≥

N∑
i=1

N∑
j=1,j 6=i

〈pij , xj〉 −
N∑
i=1

H(σi−1(x1, x2, ..., xn))

Since
∑N
i=1H(σi−1(x1, x2, ..., xn)) ≤ 0, we obtain

N∑
i=1

LH(σi−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N )) ≥

N∑
i=1

N∑
j=1,j 6=i

〈pij , xj〉.

It follows from the definition of L∗∗H that

N∑
i=1

L∗∗H (σi−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N )) ≥

N∑
i=1

N∑
j=1,j 6=i

〈pij , xj〉.

By moving the left hand side expression to the the other side, we have

0 ≥
N∑
i=1

{ N∑
j=1,j 6=i

〈pij , xj〉 − L∗∗H (σi−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N ))
}
.

Taking sup over all pji ∈ BR we obtain
∑N
i=1HL∗∗H

(σi−1(x1, x2, ..., xn)) ≤ 0 and we are done. �

We now recall the following standard elementary result.

Lemma 3.3 Let D be an open set in Rm such that D̄ ⊂ B̃R where B̃R is ball with radious R centered at the
origin in Rm. Let f : Rm → R and define f̃ : Rm → R by

f̃(y) = sup
z∈D
{〈y, z〉 − f(z)}.

If f ∈ L∞(D), then f̃ is a convex Lipschitz function and

|f̃(y1)− f̃(y2)| ≤ R‖y1 − y2‖ for all y1, y2 ∈ Rm.

Lemma 3.4 If H ∈ H−N (Ω), then the following statements hold:

1. |L∗∗H (x, p1, ..., pN−1)| ≤ R‖x‖+R
∑N−1
i=1 ‖pi‖+ (2N − 1)R2 for all x and (pi)

N−1
i=1 in Rd.

2. |HL∗∗H
(x, y1, ..., yN−1)| ≤ R‖x‖+R

∑N−1
i=1 ‖yi‖+ 2NR2 for all x and (yi)

N−1
i=1 in Rd.

3. L∗∗H and HL∗∗H
are Lipschitz continuous with Lipschitz constants Lip(HL∗∗H

), Lip(L∗∗H ) ≤ NR.

Proof. Since H is N -sub-antisymmetric, we have H(x, ..., x) ≤ 0, hence

LH(x, p1, ..., pN−1) ≥
N−1∑
i=1

〈pi, x〉 on Ω̄× (Rd)N−1.
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This together with the fact that Ω̄ ⊂ BR imply that

L∗H(p1, ..., pN−1, x) = sup
q∈Ω̄,yi∈BR

{
〈q, x〉+

N−1∑
i=1

〈pi, yi〉 − LH(q, y1, y2, ..., yN−1)

}
.

≤ sup
q∈Ω̄,yi∈BR

{
〈q, x〉+

N−1∑
i=1

〈pi, yi〉 −
N−1∑
i=1

〈q, yi〉

}
.

≤ R‖x‖+R

N−1∑
i=1

‖pi‖+ (N − 1)R2.

With a similar argument we obtain that L∗∗H (x, p1, ..., pN−1) ≤ R‖x‖ + R
∑N−1
i=1 ‖pi‖ + (N − 1)R2. We

also have

L∗∗H (x, p1, ..., pN−1) = sup
p∈Ω̄,xi∈BR

{
〈x, p〉+

N−1∑
i=1

〈pi, xi〉 − L∗H(x1, ..., xN−1, p)

}

≥ 〈x, p〉+

N−1∑
i=1

〈pi, xi〉 − L∗H(x1, ..., xN−1, p)

≥ −R‖x‖ −R
N−1∑
i=1

‖pi‖ −R‖p‖ −R
N−1∑
i=1

‖xi‖ − (N − 1)R2

≥ −R‖x‖ −R
N−1∑
i=1

‖pi‖ − (2N − 1)R2.

Therefore |L∗∗H (x, p1, ..., pN−1)| ≤ R‖x‖+ R
∑N−1
i=1 ‖pi‖+ (2N − 1)R2. The estimate for HL∗∗H

can be easily
deduced from its definition together with the estimate on L∗∗H . This completes the proof of part (1).

For (2) set D = Ω×ΠN−1
i=1 BR, then D ⊂ B̃NR where B̃NR is a ball with radius NR in RdN . Now assuming

f = L∗H in Lemma 3.3, we have that f̃ = L∗∗H . Therefore L∗∗H is Lipschitz in (Rd)N with Lip(L∗∗H ) ≤ NR. To
prove that HL∗∗H

is Lipschitz continuous, we first fix y ∈ Rd and define fy : (Rd)N−1 → R by

fy(p1, ..., pN−1) = L∗∗H (y, p1, ...pN−1).

Assuming D = BR ⊂ RN in Proposition 3.3, we obtain that the map

(x1, ..., xN−1)→ f̃y(x1, ..., xN−1) = HL∗∗H
(y, x1, ..., xN−1)

is Lipschitz and

|HL∗∗H
(y, x1, ..., xN−1)−HL∗∗H

(y, z1, ..., zN−1)| ≤ R
N−1∑
i=1

‖xi − zi‖ (32)

for all (xi), (zi) ∈ (Rd)N−1. Noticing that the Lipschitz constant R is independent of y, the above inequality
holds for all (xi), (zi) ∈ (Rd)N−1 and y ∈ Rd. To prove HL∗∗H

(y, x1, ..., xN−1) is Lipschitz with respect to the

first variable y, let r > 0 and y1, y2 ∈ Rd. Let p1, ..., pN−1 and q1, ..., qN−1 be such that

N−1∑
i=1

〈xi, qi〉 − L∗∗H (y1, q1, ..., qN−1) ≤ HL∗∗H
(y1, x1, ..., xN−1) ≤

N−1∑
i=1

〈xi, pi〉 − L∗∗H (y1, p1, ..., pN−1) + r,

and

N−1∑
i=1

〈xi, pi〉 − L∗∗H (y2, p1, ..., pN−1) ≤ HL∗∗H
(y2, x1, ..., xN−1) ≤

N−1∑
i=1

〈xi, qi〉 − L∗∗H (y2, q1, ..., qN−1) + r,

10



It follows that

L∗∗H (y2, q1, ..., qN−1)− L∗∗H (y1, q1, ..., qN−1)− r ≤ HL∗∗H
(y1, x1, ..., xN−1)−HL∗∗H

(y2, x1, ..., xN−1)

≤ L∗∗H (y2, p1, ..., pN−1)− L∗∗H (y1, p1, ..., pN−1) + r.

Since L∗∗H is Lipschitz,

−NR‖y1 − y2‖ − r ≤ HL∗∗H
(y1, x1, ..., xN−1)−HL∗∗H

(y2, x1, ..., xN−1) ≤ NR‖y1 − y2‖+ r.

Since r > 0 is arbitrary we obtain

−NR‖y1 − y2‖ ≤ HL∗∗H
(y1, x1, ..., xN−1)−HL∗∗H

(y2, x1, ..., xN−1) ≤ NR‖y1 − y2‖.

This together with ( 32) prove that HL∗∗H
is Lipschitz continuous and that Lip(HL∗∗H

) ≤ NR. �

Proof of Proposition 3.1. 1) By Lemma 3.2, we have that H1
reg := HL∗∗H

is a concave-convex Hamil-

tonian on Rd × (Rd)N−1 whose restriction to Ω̄N is N -sub-antisymmetric, hence belong to H−N (Ω).
2) To show that H2

reg is N -antisymmetric note that

NH2
reg(x) = (N − 1)H1

reg(x)−
N−1∑
i=1

H1
reg(R

i(x)) =

N−1∑
i=1

[
H1
reg(x)−H1

reg(R
i(x))

]
and each of the terms H1

reg(x)−H1
reg(R

i(x)) is easily seen to be N -antisymmetric.
Now H2

reg dominates H1
reg since

N
[
H2
reg(x)−H1

reg(x)
]

= −H1
reg(x)−

N−1∑
i=1

H1
reg(R

i(x)) ≥ 0,

since H1
reg is N -sub-antisymmetric.

3) For x ∈ Ω and p1, ..., pN−1 ∈ BR we have

LH1
reg

(x, p1, ..., pN−1) = sup
yi∈Ω

{N−1∑
i=1

〈pi, yi〉 −HL∗∗H
(x, y1, ..., yN−1)

}
= sup

yi∈Ω

{N−1∑
i=1

〈pi, yi〉 − sup
qi∈BR

{
N−1∑
i=1

〈qi, yi〉 − L∗∗H (x, q1, ..., qN−1)}
}

= sup
yi∈Ω

inf
qi∈BR

{N−1∑
i=1

〈pi, yi〉 −
N−1∑
i=1

〈qi, yi〉+ L∗∗H (x, q1, ..., qN−1)}
}

≤ inf
qi∈BR

sup
yi∈Ω

{N−1∑
i=1

〈pi, yi〉 −
N−1∑
i=1

〈qi, yi〉+ L∗∗H (x, q1, ..., qN−1)}
}

≤ sup
yi∈Ω

{N−1∑
i=1

〈pi, yi〉 −
N−1∑
i=1

〈pi, yi〉+ L∗∗H (x, p1, ..., pN−1)}
}

= L∗∗H (x, p1, ..., pN−1)

On the other hand by Lemma (3.1) we have L∗∗H ≤ LH , and therefore LH1
reg
≤ LH . It also follows from part

2) that LH2
reg
≤ LH1

reg
. This completes the proof of part 3).

Parts 4), 5) and 6) are the subject of the preceding Lemmas. �
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4 Proof of Theorem 1.1: Existence

We first show that the minimization problem (DK) has a solution. Let BR be a ball such that Ω̄ and
ui(Ω̄) ⊂ BR for all i = 1, ..., N −1. Let {Hn} be a sequence in H such that LHn is a minimizing sequence for
(DK). Denoting H1

n := (Hn)1
reg, we get from Proposition 3.1 that LH1

n
≤ LHn on Ω̄× BN−1

R and therefore
LH1

n
is also minimizing for (DK). It also follows from Proposition 3.1 that LH1

n
and H1

n, are uniformly
Lipschitz with Lip(H1

n), Lip(LH1
n
) ≤ NR. Moreover,

|H1
n(x, y1, ..., yN−1)| ≤ R‖x‖+R

∑N−1
i=1 ‖yi‖+ 2NR2 for all x and (yi)

N−1
i=1 in Rd,

and
|LH1

n
(x, p1, ..., pN−1)| ≤ R‖x‖+R

∑N−1
i=1 ‖pi‖+ (2N − 1)R2 for all x, p1, ..., pN−1 in Rd.

By Arzela-Ascoli’s theorem, there exists two Lipschitz functions H̃ and L̃ : Rd×Rd(N−1) → R such that H1
n

converges to H̃ and L1
n converges to L̃ uniformly on every compact set of RN × ...× RN . This implies that

H̃ ∈ H−N (Ω). Note that

LH1
n
(x, p1, ..., pN−1) +H1

n(x, y1, ..., yN−1) ≥
N−1∑
i=1

〈yi, pi〉,

for all x, p1, ..., pN−1 ∈ RN and y1, ..., yN−1 ∈ Ω̄, from which we have

L̃(x, p1, ..., pN−1) ≥
N−1∑
i=1

〈yi, pi〉 − H̃(x, y1, ..., yN−1),

for all x, p1, ..., pN−1 ∈ RN and y1, ..., yN−1 ∈ Ω̄. This implies that LH̃ ≤ L̃. Let H1
∞ = H̃1

reg and H2
∞ = H̃2

reg

be the regularizations of H̃ defined in the previous section. Set Li∞ = LHi∞ for i = 1, 2. It follows from

Proposition 3.1 that LH2
∞
≤ LH1

∞
≤ LH̃ on Ω̄×BN−1

R , from which we have

DK =

∫
Ω

LH̃(x, u1(x), ..., uN−1(x)) dµ(x)

=

∫
Ω

L2
∞(x, u1(x), ..., uN−1(x)) dµ(x)

=

∫
Ω

L1
∞(x, u1(x), ..., uN−1(x)) dµ(x).

�
For the rest of the proof, we shall need the following two technical lemmas. The first one relates L∗H to

the standard Legendre transform of H (extended beyond ΩN to the whole of RdN .)

Lemma 4.1 Let H∞ = H1
∞ be the concave-convex Hamiltonian obtained above and L∞ = L1

∞. For each
x ∈ Ω̄, define fx : (Rd)N−1 → R by

fx(y1, ..., yN−1) := H∞(x, y1, ..., yN−1).

We also define f̃x : (Rd)N−1 → R ∪ {+∞} by

f̃x(y1, ..., yN−1) := fx(y1, ..., yN−1) if y1, ..., yN−1 ∈ Ω̄N−1 and +∞ otherwise.

Let (f̃x)∗ be the standard Fenchel dual of f̃x on (Rd)N−1 in such a way that (f̃x)∗∗∗ = (f̃x)∗ on (Rd)N−1.
We then have,

fx = (f̃x)∗∗ = f̃x on Ω̄N−1 (33)

and

L∞(x, p1, ..., pN−1) = sup
(zi)∈Ω̄N−1

{
N−1∑
i=1

〈zi, pi〉 − (f̃x)∗∗(z1, ..., zN−1)}

= sup
(zi)∈(Rd)N−1

{
N−1∑
i=1

〈zi, pi〉 − (f̃x)∗∗(z1, ..., zN−1)}. (34)
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Proof. Since (f̃x)∗∗ is the largest convex function below f̃x we have and fx ≤ (f̃x)∗∗ ≤ f̃x, from which we
obtain fx = (f̃x)∗∗ = f̃x on Ω̄N−1.

For (34), we first deduce from (33) that

(f̃x)∗(y1, ..., yN−1) = (f̃x)∗∗∗(y1, ..., yN−1)

= sup
z∈Rd(N−1

{
N−1∑
i=1

〈zi, yi〉 − (f̃x)∗∗(z1, ..., zN−1)}

≥ sup
z∈BN−1

R

{
N−1∑
i=1

〈zi, yi〉 − (f̃x)∗∗(z1, ..., zN−1)}

≥ sup
z∈ΩN−1

{
N−1∑
i=1

〈zi, yi〉 − (f̃x)∗∗(z1, ..., zN−1)}

= sup
z∈ΩN−1

{
N−1∑
i=1

〈zi, yi〉 − fx(z1, ..., zN−1)}

= sup
z∈ΩN−1

{
N−1∑
i=1

〈zi, yi〉 − f̃x(z1, ..., zN−1)}

= (f̃x)∗(y1, ..., yN−1),

from which we have the desired result. �

Fix now H∞ as above and let H ∈ C(Ω̄N ). For each λ > 0 and r ∈ (−1, 1), we associated the following
three functionals.

Lr,λ(x, p1, ..., pN−1) := sup
(zi)∈Ω̄N−1

{
N−1∑
i=1

〈zi, pi〉 − (f̃x)∗∗(z1, ..., zN−1)− λ

2
[

N−1∑
i=1

‖zi‖2 − (N − 1)‖x‖2]

+rH(x, z1, ..., zN−1)}

Lλ(x, p1, ..., pN−1) := sup
(zi)∈Rd(N−1)

{
N−1∑
i=1

〈zi, pi〉 − (f̃x)∗∗(z1, ..., zN−1)− λ

2
[

N−1∑
i=1

‖zi‖2 − (N − 1)‖x‖2]

}

Lr(x, p1, ..., pN−1) := sup
(zi)∈Ω̄N−1

{
N−1∑
i=1

〈zi, pi〉 −H∞(x, z1, ..., zN−1) + rH(x, z1, ..., zN−1)

}
.

Lemma 4.2 Let H ∈ C(Ω̄N ) be such that H∞ − rH ∈ H
−

N (Ω) for all r ∈ (−1, 1). Then the following hold:

1. For every (x, p1, ..., pN−1) ∈ Rd × Rd(N−1), we have

lim
λ→0+

Lλ(x, p1, ..., pN−1) = L∞(x, p1, ..., pN−1) and lim
λ→0+

Lr,λ(x, p1, ..., pN−1) = Lr(x, p1, ..., pN−1).

2. For all x ∈ Rd, the function (p1, ..., pN−1)→ Lλ(x, p1, ..., pN−1) is differentiable.

3. For every (x, p1, ..., pN−1) ∈ Rd × Rd(N−1), we have

lim
r→0

Lr,λ(x, p1, ..., pN−1)− Lλ(x, p1, ..., pN−1)

r
= H(∇2,...,NLλ(x, p1, ..., pN−1), x).

Proof. Yosida’s regularization of convex functions and Lemma 4.1 yield that

lim
λ→0+

Lr,λ(x, p1, ..., pN−1) = sup
(zi)∈Ω̄N−1

{
N−1∑
i=1

〈zi, pi〉 − (f̃x)∗∗(z1, ..., zN−1)− rH(x, z1, ..., zN−1)}

= sup
(zi)∈Ω̄N−1

{
N−1∑
i=1

〈zi, pi〉 −H∞(x, z1, ..., zN−1)− rH(x, z1, ..., zN−1)}

= Lr(x, p1, ..., pN−1).
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We also have

lim
λ→0

Lλ(x, p1, ..., pN−1) = sup
(zi)∈Rd(N−1)

{
N−1∑
i=1

〈zi, pi〉 − (f̃x)∗∗(z1, ..., zN−1)},

which, together with Lemma 4.1, yield that limλ→0 Lλ(x, p1, ..., pN−1) = L∞(x, p1, ..., pN−1).
(2) follows from the fact that the Yosida regularization of convex functions are differentiable.
(3) We let z

(r,λ,i)
∈ Ω̄ and z′

(r,λ,i)
∈ Rd be such that

Lr,λ(x, p1, ..., pN−1) ≤
N−1∑
i=1

〈z
(r,λ,i)

, pi〉 − (f̃x)∗∗(z
(r,λ,1)

, ..., z
(r,λ,N−1)

)− λ

2

N−1∑
i=1

‖z
(r,λ,i)

‖2

+λ
(N − 1)‖x‖2

2
+ rH(x, z

(r,λ,1)
, ..., z

(r,λ,N−1)
) + r2,

Lλ(x, p1, ..., pN−1) ≤
N−1∑
i=1

〈z′λ,i, pi〉 − (f̃x)∗∗(z′
(r,λ,1)

, ..., z
(r,λ,N−1)

)− λ

2

N−1∑
i=1

‖z′
(r,λ,i)

‖2 + λ
(N − 1)‖x‖2

2
+ r2.

Therefore,

rH(x, z′
(r,λ,1)

, ..., z′
(r,λ,N−1)

)− r2 ≤ Lr,λ(x, p1, ..., pN−1)− Lλ(x, p1, ..., pN−1)

≤ rH(x, z
(r,λ,1)

, ..., z
(r,λ,N−1)

) + r2. (35)

By the definition of Lλ, we have supr∈[−1,1] ‖z′r,λ,i‖ < ∞. Suppose now that, up to a subsequence, zr,λ,i →
zi ∈ Ω̄ and z′r,λ,i → z′λ,i as r → 0. This together with the definition of Lr,λ and Lλ imply that

Lλ(x, p1, ..., pN−1) =

N−1∑
i=1

〈z
(λ,i)

, pi〉 − (f̃x)∗∗(z
(λ,1)

, ..., z
(λ,N−1)

)− λ

2

N−1∑
i=1

‖z
(λ,i)
‖2 + λ(N − 1)

‖x‖2

2

=

N−1∑
i=1

〈z′λ,i, pi〉 − (f̃x)∗∗(z
(λ,1)

, ..., z′
(λ,N−1)

)− λ

2

N−1∑
i=1

‖z′
(λ,i)
‖2 + λ(N − 1)

‖x‖2

2
,

from which we obtain that

zλ,i = z′λ,i = ∇iLλ(x, p1, ..., pN−1) ∈ Ω̄, i = 2, ..., N (36)

Therefore, it follows from (35) that

lim
r→0

Lr,λ(x, p1, ..., pN−1)− Lλ(x, p1, ..., pN−1)

r
= H

(
∇2,...,NLλ(x, p1, ..., pN−1), x

)
.

�
End of the proof of Theorem 1.1: For each λ > 0, x ∈ Ω̄ and p ∈ RN , we define

S̄λ,i(x, p1, ..., pN−1) = ∇iLλ(x, p1, ..., pN−1) i = 2, ..., N

It is easy to see that S̄λ,i(x, p1, ..., pN−1) → S̄0,i(x, p1, ..., pN−1) where S̄0,i(x, p1, ..., pN−1) is the unique
element with minimal norm in ∂iL∞(x, p1, ..., pN−1). Set Sλ,i(x) = S̄λ,i(x, u1(x), ..., uN−1(x)), and Si(x) =
S0,i(x, u1(x), ..., uN−1(x)). For each r > 0, λ ∈ [0, 1] and x ∈ Ω̄, define

ηr(λ, x) =
Lr,λ(x, u1(x), ..., uN−1x)− Lλ(x, u1(x), ..., uN−1(x))

r
.

Note that the function r → Lr,λ(x, u1(x), ..., uN−1(x)) is a convex function because it is supremum of a
family of linear functions. Thus, for fixed (x, λ) ∈ Ω × [0, 1], the function r → ηr(λ, x) is non-decreasing.
Setting η0(λ, x) to be H(x, Sλ,1(x), ..., Sλ,N−1(x)) for λ > 0 and η0(0, x) = H(x, S1(x), ..., SN−1(x)), we have
that both functions λ→ ηr(λ, x) and λ→ η0(λ, x) are continuous. It follows from Dini’s Theorem, that for
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a fixed x, ηr(λ, x) converges uniformly to η0(λ, x) as r → 0 with respect to λ ∈ [0, 1]. Note also that thanks
to (36) we have that Sλ,i, Si : Ω̄→ Ω̄ and for all x ∈ Ω.

(S1x, ..., SN−1x) ∈ ∂2,...,NL∞(x, u1(x), ..., uN−1(x)). (37)

We now show that∫
Ω
H(x, S1x, ..., SN−1x) dµ(x) = 0 for all H ∈ C(Ω̄N ) with H∞ − rH ∈ H

−

N (Ω), r ∈ (−1, 1). (38)

Indeed, since |H(x, S1x, ..., SN−1x)| ≤ ‖H‖L∞(Ω̄N ), we get from Lebesgue’s dominated convergence Theorem,

lim
λ→0

∫
Ω

H(x, Sλ,1(x), ..., Sλ,N−1(x)) dµ(x) =

∫
Ω

H(x, S1x, ..., SN−1x) dµ(x).

From (35) we have ∣∣∣Lr,λ(x, p1, ..., pN−1)− Lλ(x, p1, ..., pN−1)

r

∣∣∣ ≤ ‖H‖L∞(Ω̄N ) + |r|,

from which follows that∫
Ω

H(x, S1x, ..., SN−1x) dµ(x) =

∫
Ω

lim
λ→0

lim
r→0+

Lr,λ(x, u1(x), ..., uN−1(x))− Lλ(x, u1(x), ..., uN−1(x))

r
dµ(x)

=

∫
Ω

lim
λ→0

lim
r→0+

ηr(λ, x) dµ(x)

=

∫
Ω

lim
r→0+

lim
λ→0

ηr(λ, x) dµ(x) (due to the uniform convergence)

=

∫
Ω

lim
r→0+

ηr(0, x) dµ(x)

= lim
r→0+

∫
Ω

ηr(0, x) dµ(x) (due to the monotone convergence theorem)

= lim
r→0+

∫
Ω

Lr(x, u1(x), ..., uN−1(x))− L∞(x, u1(x), ..., uN−1(x))

r
dµ(x)

≥ 0, (in view of the optimality of H∞ compared to H∞ − rH).

In other words, we have
∫

Ω
H(x, S1x, ..., SN−1x) dµ(x) ≥ 0. By the same argument considering r → 0−, one

has
∫

Ω
H(x, S1x, ..., SN−1x) dµ(x) ≤ 0 and therefore the latter is indeed zero as desired.

Note now that (38) yields that both∫
Ω

H∞(x, S1x, ..., SN−1x) dµ(x) = 0, (39)

and that ∫
Ω
H(x, S1x, ..., SN−1x) dµ(x) = 0 for all H ∈ HN (Ω). (40)

It follows from Lemma 2.3 that S is measure preserving, that Si = Si1 and that SN1 = I. We shall now write
S for S1.

We now show that DK = MK. We already know that MK ≤ DK. To prove the equality, we use the
fact that (Sx, ..., SN−1x) ∈ ∂2,...,NL∞(x, u1(x), ..., uN−1(x)) together with (f̃x)∗∗ being the Fenchel dual of
L with respect to the last N − 1 variables and Lemma 4.1 to obtain that

(u1(x), ..., uN−1(x)) ∈ ∂(f̃x)∗∗(Sx, ..., SN−1x). (41)

Since meas(∂Ω) = 0, the set ∪N−1
i=1 S−i(∂Ω) is negligible and for each x ∈ Ω \ ∪N−1

i=1 S−i(∂Ω), one has

∂(f̃x)∗∗(Sx, ..., SN−1x) = ∂2,...,NH∞(x, Sx, ..., SN−1x).
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It follows that
(u1(x), ..., uN−1(x)) ∈ ∂2,...,NH∞(x, Sx, ..., SN−1x) a.e. x ∈ Ω. (42)

We finally get that

DK =

∫
Ω

L∞(x, u1(x), ..., uN−1(x)) dµ(x)

=

∫
Ω

L∞(x, u1(x), ..., uN−1(x)) dµ(x) +

∫
Ω

H∞(x, Sx, ..., SN−1x) dµ(x)

=

∫
Ω

L∞(x, u1(x), ..., uN−1(x)) dµ(x) +

∫
Ω

(f̃x)∗∗(Sx, ..., SN−1x) dµ(x)

=

∫
Ω

N−1∑
i=1

〈ui(x), Si(x)〉 dµ(x) ≤MK.

If now ui ∈W 1,1
loc (Ω) for i = 1, 2, ..., N−1, or if S is a.e. differentiable, then by Theorem 7.1 of the Appendix,

there exists a full measure subset Ω0 of Ω that ∇2,...,NH∞(x, Sx, ..., SN−1x) exists for all x ∈ Ω0. It follows
that (

u1(x), ..., uN−1(x)
)

= ∇2,...,NH∞(x, Sx, ..., SN−1x) for all x ∈ Ω0.

5 Proof of Theorem 1.1: Uniqueness

We now deal with part (5) of Theorem 1.1. H∞ will denote an optimal concave-convex N -sub-antisymmetric
associated to the vector fields u1, ..., uN−1 via the above variational procedure.

Lemma 5.1 Assume that the vector fields u1, ..., uN−1 from Ω to Rd are such that(
u1(x), ..., uN−1(x)

)
∈ ∂2,...,NH1(x, Sx, ..., SN−1x) a.e. x ∈ Ω,

for some concave-convex N -sub-antisymmetric Hamiltonian H1 and some N -involution S, then (H1, S) is
an “extremal pair”, meaning that the infimum (DK) is attained at H1 and the supremum (MK ′) is attained
at S. Moreover, we have(

u1(x), ..., uN−1(x)
)
∈ ∂2,...,NH∞(x, Sx, ..., SN−1x) a.e. x ∈ Ω,

where H∞ is the optimal Hamiltonian constructed above.

Proof. Let L be the Fenchel-Legendre dual of H1 with respect to the last N − 1 variable. We have that
LH1

≤ L on (Rd)N−1 × Ω. It follows that

N−1∑
i=1

〈ui(x), Si(x)〉 ≤ LH1(x, u1(x), ..., uN−1(x)) +H1(x, Sx, ..., SN−1x)

≤ L(x, u1(x), ..., uN−1(x)) +H1(x, Sx, ..., SN−1x)

=

N−1∑
i=1

〈ui(x), Si(x)〉,

from which we deduce that

N−1∑
i=1

〈ui(x), Si(x)〉 = LH1
(x, u1(x), ..., uN−1(x)) +H1(x, Sx, ..., SN−1x),

and ∫
Ω

N−1∑
i=1

〈ui(x), Si(x)〉 dx =

∫
Ω

LH1(x, u1(x), ..., uN−1(x)) dx+

∫
Ω

H1(x, Sx, ..., SN−1x) dx.
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Use now the optimality of H1 compared to H1 − rH1 for −1 < r < 1 (Indeed, the above equality will be
an inequality when H1 is replaced by H1 − rH1 for r 6= 0) and the same argument as in the proof of the
existence part in Theorem 1.1 for H∞ to obtain that

∫
Ω
H1(x, Sx, ..., SN−1x) dx = 0. On the other hand,

we have ∫
Ω

N−1∑
i=1

〈ui(x), Si(x)〉 dx ≤MK ′ = DK ≤
∫

Ω

LH1(x, u1(x), ..., uN−1(x)) dx,

which yields ∫
Ω

N−1∑
i=1

〈ui(x), Si(x)〉 dx = MK ′ = DK =

∫
Ω

LH1
(x, u1(x), ..., uN−1(x)) dx.

Now we can show that ui(x) ∈ ∂i+1H∞(x, Sx, ..., SN−1x) a.e. In fact,∫
Ω

N−1∑
i=1

〈ui(x), Si(x)〉 dx =

∫
Ω

LH1(x, u1(x), ..., uN−1(x)) dx

= DK =

∫
Ω

L∞(x, u1(x), ..., uN−1(x)) dx

≥
∫

Ω

L∞(x, u1(x), ..., uN−1(x)) dx+

∫
Ω

H∞(x, Sx, ..., SN−1x) dx

≥
∫

Ω

N−1∑
i=1

〈ui(x), Si(x)〉 dx,

which implies that∑N−1
i=1 〈ui(x), Si(x)〉 = L∞(x, u1(x), ..., uN−1(x)) +H∞(x, Sx, ..., SN−1x) a.e. on Ω,

and hence the desired result. �

Lemma 5.2 Suppose S is a measure preserving N-involution and ui(x) = ∇i+1H∞(x, Sx, ..., SN−1) a.e. for
i = 1, ..., N − 1. Then

∇1H∞(x, Sx, ..., SN−1x) = −
N−1∑
i=1

ui(S
N−ix) a.e. x ∈ Ω

Proof. Let u ∈ Rd and let |t| be small. Note that∫
Ω

N∑
i=1

H∞
(
σN+1−i(x, Sx, ..., SN−1x)

)
dx = N

∫
Ω

H∞
(
x, Sx, ..., SN−1x

)
dx = 0.

Since
∑N
i=1H∞(σN+1−i(x, Sx, ..., SN−1(x)

)
) ≤ 0, it follows that

N∑
i=1

H∞
(
σN+1−i(x, Sx, ..., SN−1x)

)
= 0 a.e. x ∈ Ω.

Note that H∞ is N -sub-antisymmetric and therefore

N∑
i=1

H∞
(
σN+1−i(x+ tu, Sx, ..., SN−1x)

)
≤ 0 =

N∑
i=1

H∞
(
σN+1−i(x, Sx, ..., SN−1x)

)
.

Assuming x is a point where ∇iH∞
(
σN+1−i(x+ tu, Sx, ..., SN−1x)

)
exists for all i = 1, ..., N, then

N∑
i=1

∇iH∞
(
σN+1−i(x, Sx, ..., SN−1x)

)
= 0.
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Since ui(x) = ∇i+1H∞(x, Sx, .., SN−1x) and SN = I a.e., we have for i = 2, 3, ..., N ,

ui−1(SN+1−ix) = ∇iH∞
(
σN+1−i(x, Sx, ..., SN−1x)

)
.

Therefore,
N−1∑
i=1

ui(S
N−ix) +∇1H∞(x, Sx, ..., SN−1x) = 0.

Proposition 5.1 Let u1, ..., uN−1 be vector fields in W 1,1
loc (Ω) such that for any two families of points

x1, ..., xN and y1, ..., yN in Ω, the function

x→
N−1∑
i=1

〈ui(x), yi − xi〉+

N−1∑
i=1

〈ui(yN−i)− ui(xN−i), x〉

has no critical point unless when x1 = y1. Then, there is a unique measure preserving N -involution S on Ω
that satisfies (15) for some concave-convex N -sub-antisymmetric Hamiltonian H.

Proof. Suppose S1, S2 are two measure preserving N -involutions on Ω and H1 and H2 are two concave-
convex N -sub-antisymmetric Hamiltonian on ΩN such that for j = 1, 2, we have

ui(x) = ∇iHj(x, S
1
j x, ..., S

N−1
j ) i = 1, ..., N − 1. (43)

We shall show that S1 = S2 a.e. on Ω. Note first that Lemma 5.1 gives that

ui(x) = ∇iH∞(x, S1
j x, ..., S

N−1
j ). (44)

From the preceding lemma, we have that

−
N−1∑
i=1

ui(S
N−i
j x) = ∇1H∞(x, S1

j x, ..., S
N−1
j ).

Note that the function x → L∞(x, u1, ..., uN−1(x)) is locally Lipschitz and therefore is differentiable on a
subset Ω0 of full measure. We now show that S1 = S2 on Ω0.

Indeed, for any x ∈ Ω0, h = 0 is a minimum for the function

h→ L∞(x+ h, u1(x+ h), ..., uN−1(x+ h)) +H∞(x+ h, S1
j x, ..., S

N−1
j x)−

N−1∑
i=1

〈ui(x+ h), Sij(x)〉.

This implies that

∇1H∞(x, S1
1x, ..., S

N−1
1 x)−

N−1∑
i=1

〈∇ui(x), Si1(x)〉 = − d

dh
L∞(x+ h, u1(x+ h), ..., uN−1(x+ h))h=0

= ∇1H∞(x, S1
2x, ..., S

N−1
2 x)−

N−1∑
i=1

〈∇ui(x), Si2(x)〉.

This yields that

N−1∑
i=1

〈∇ui(x), Si2(x)− Si1(x)〉 = ∇1H∞(x, S1
2x, ..., S

N−1
2 x)−∇1H∞(x, S1

1x, ..., S
N−1
1 x)

=

N−1∑
i=1

(
ui(S

N−i
1 (x))− ui(SN−i2 (x)

)
.

The hypothesis then implies that S1(x) = S2(x), and S is therefore unique.

In order to find examples of families of vector fields satisfying the above sufficient condition for uniqueness,
we look again at N -monotone vector fields. For that we introduce the following notion.
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Definition 5.3 Say that a family of vector fields (u1, u2, ..., uN−1) on Ω is strictly jointly N -monotone if

N∑
i=1

N−1∑
l=1

〈ul(xi), xi − xi+l〉 > 0, (45)

for every cycle x1, ..., x2N−1 of points in Ω such that xN+l = xl for 1 ≤ l ≤ N − 1, and x1 6= x2.

Note that for N = 2, this property means that the vector field u1 is strictly 2-monotone, meaning that

〈u1(y)− u1(x), y − x〉 > 0 for all y, x ∈ Ω with x 6= y. (46)

In this case, it is easy to see that if u1 is differentiable, then strict monotonicity implies the sufficient condition
for uniqueness mentioned in Proposition 5.1. Indeed, let u ∈ Rd and x ∈ Ω. By taking y = x + tu in (46)
and letting t→ 0+ we obtain 〈∇u1(x)u, u〉 ≥ 0.

Assume now that the function x → 〈u1(x), y1 − x1〉 + 〈u1(y1) − u1(x1), x〉 has a critical point and that
y1 6= x1. It follows that

〈∇u1(x)(y1 − x1), y1 − x1〉+ 〈u1(y1)− u1(x1), y1 − x1〉 = 0.

Since the first term is non-negative and the second one is strictly positive, this leads to a contradiction.
One can however, establish directly the following uniqueness result for strictly jointlyN -monotone families

for N ≥ 2, even without the differentiability assumption on u1, ..., uN−1. This is because we already know
from the result of Galichon-Ghoussoub mentioned above that S1(x) = x is one of the possible N -involution
measure preserving maps in the representation of (u1, ..., uN−1).

Proposition 5.2 Assume u1, ..., uN−1 is a strictly jointly N -monotone family of bounded vector fields on Ω.
Then, S = I is the only measure preserving N -involution S on Ω that satisfies (15) for some concave-convex
N -sub-antisymmetric Hamiltonian H.

Proof. Let’s assume S is another measure preserving N -involution in the decomposition. Let xi = Six for
i = 1, 2, ..., N and note that xN = x. It follows from (45) that

N−1∑
i=0

N−1∑
l=1

〈ul(Six), Six− Si+lx〉 ≥ 0.

Integrating the above expression over Ω implies that

0 ≤
∫

Ω

N−1∑
i=0

N−1∑
l=1

〈ul(Six), Six− Si+lx〉 dx

=

N−1∑
i=0

N−1∑
l=1

∫
Ω

〈ul(Six), Six〉 dx−
N−1∑
i=0

N−1∑
l=1

∫
Ω

〈ul(Six), Si+lx〉 dx

=

N−1∑
i=0

N−1∑
l=1

∫
Ω

〈ul(x), x〉 dx−
N−1∑
i=0

N−1∑
l=1

∫
Ω

〈ul(x), Slx〉 dx

= N

N−1∑
l=1

∫
Ω

〈ul(x), x〉 dx−N
N−1∑
l=1

∫
Ω

〈ul(x), Slx〉 dx

= N

∫
Ω

L∞(x, u1(x), ..., uN−1(x)) dx−N
∫

Ω

L∞(x, u1(x), ..., uN−1(x)) dx

= 0.

The latter is because both terms correspond to the optimal value (MK’). Since the integrand in the first line
of the above expression is nonnegative we obtain

N−1∑
i=0

N−1∑
l=1

〈ul(Six), Six− Si+lx〉 = 0, a.e. x ∈ Ω,

and therefore Sx = x. �
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6 Proof of Theorem 1.2

The question here is what happens when some of the vector fields ui are identically zero. Let us illustrate
the situation by assuming that just one of them, say uN−1 ≡ 0. In this case, there are two scenarios:

(I) One can begin with N−2 vectors u1, .., uN−2, and obtain a sub (N−1)−antisymmetric hamiltonian
H and an (N − 1)−involution S such that ui(x) ∈ ∂Hi+1(x, Sx, ..., SN−2x).

(II) One can proceed as above, while considering uN−1 ≡ 0 a vector field like the others. Note that in
the proof of the main theorem we never assumed uN−1 6= 0, except on line (42) and the preceding paragraph.
However, it is easily seen that by assuming uN−1 ≡ 0, one still gets

(u1(x), ..., uN−2(x)) ∈ ∂2,...,N−2H∞(x, Sx, ..., SN−1x) a.e. x ∈ Ω.

and the dependence of the Hamiltonian H∞ with respect to the N -th variable seems to be redundant. It
is interesting to see that in this case H∞ can be chosen to be an N−antisymmetric Hamiltonian, which
depends on only N − 1 variables.

Indeed, we shall show that H1
reg(x1, ..., xN ) = HL∗∗H

(x1, , ..., xN−1, xN ) can be replaced by

H0
reg(x1, ..., xN−1, xN ) := F0(x1, ..., xN−1), (47)

where

F0(x1, , ..., xN−1) = sup
p2,...,pN−1∈BR

{N−1∑
i=2

〈pi, xi〉 − L∗∗H (x1, p2, ..., pN−1, 0)
}
.

It follows from (31) that for all xi ∈ Ω and pij ∈ Rd the following inequality holds

N∑
i=1

{ N∑
j=1,j 6=i

〈pij , xj〉 − L∗∗H (Ri−1(pi1, ..., p
i
i−1, xi, p

i
i+1, ..., p

i
N ))
}
≤ 0.

In the above expression, set pii−1 = p1
N = 0 for i > 1. By taking sup over all non-zero pji ∈ BR we obtain

N∑
i=1

H0
reg

(
σi−1(x1, ..., xN )

)
≤ 0. (48)

This proves that H0
reg is N−sub-antisymmetric. By defining

H2
reg(x) =

(N − 1)H0
reg(x)−

∑N−1
i=1 H0

reg(σ
i(x))

N
,

and using a similar argument as in the proof of Proposition 3.1, one can also obtain that LH2
reg
≤ LH0

reg
≤ LH

on Ω̄× (BR)N−1. This together with ( 47) and ( 48) imply that the Hamiltonian H∞ obtained in the proof
of Theorem 1.1 can be chosen to be independent with respect to the last variable.

Similarly, one can show that if more than one vector fields is zero, then the dependence of H∞ on the
corresponding variables can be dropped.

Suppose now that u2 = ... = uN−1 = 0. In this case H∞ is just function of two variables, i.e.
H(x1, x2, ..., xN ) = F (x1, x2) for some Lipschitz function F , which is concave with respect to the first vari-
able and convex with respect to the second one. Therefore u1(x) ∈ ∂2F (x, Sx) for some measure preserving
N−involution. In this case, H∞ being sub N-antisymmetric reads as∑N

i=1 F (xi+1, xi) ≤ 0 for all x1, ...xN ∈ Ω with x1 = xN+1.

7 Appendix

Theorem 7.1 Consider vector fields (ui)
N−1
i=1 on Ω such that for i = 1, 2, ..., N − 1,

ui(x) ∈ ∂i+1H(x, Sx, ..., SN−1x) a.e. Ω, (49)
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where S : Ω̄ → Ω̄ is a measure preserving N -involution, and H : Rd × (Rd)N−1 is a Lipschitz function
satisfying the following properties:

1. H( . , X) is concave for every X ∈ (Rd)N−1, and H(x, . ) is convex for all x ∈ Rd.

2. H is N -sub-antisymmetric on (Ω̄)N .

3.
∫

Ω
H(x, Sx, ..., SN−1x) dx = 0.

If either S ∈ W 1,1
loc (Ω)) or ui ∈ W 1,1

loc (Ω) for i = 1, 2, ..., N − 1, then there exists a full measure subset Ω0 of
Ω such that ∇iH(x, Sx, ..., SN−1x) exists for all x ∈ Ω0.

We shall need a few preliminary results. We first list some of the properties of directional derivatives of
convex functions.

Lemma 7.2 Let f : Rn → (−∞,+∞] be a proper convex function. Let x be a point where f is finite. The
following statements hold:

1. For each v ∈ Rn, the difference quotient in the definition of Df(x)v is a non-decreasing function of
λ > 0, so that Df(x)v exists and

Df(x)v = inf
λ>0

f(x+ λv)− f(x)

λ
. (50)

2. the function v → Df(x)v is a positively homogeneous convex function of v with

Df(x)u+Df(x)(−v) ≥ 0 ∀v ∈ Rn.

Lemma 7.3 For each v ∈ Rd, we have∫
Ω

D1H(x, Sx, S2x, ..., SN−1x)(v) dx+

∫
Q

D1H(x, Sx, S2x, ..., SN−1x)(−v) dx = 0.

Proof. Let t > 0 and define

I1(x, v, t) = H(x, S(x+ tv), S2(x+ tv), ..., SN−1(x+ tv)),

I2(x, v, t) = H(x+ tv, Sx, S2x, ..., SN−1x).

Let g ∈ C∞c (Ω) be a non-negative function. By a simple change of variables, we have for t > 0 small enough,∫
Ω

I1(x, v, t)g(x) + I1(x,−v, t)g(x)− 2I1(x, 0, 0)g(x)

t
dx =∫

Ω

I2(x,−v, t)g(x− tv) + I2(x, v, t)g(x+ tv)− 2I1(x, 0, 0)g(x)

t
dx (51)

The limit of the right hand side of the above expression exists as t→ 0+ and

lim
t→0+

∫
Ω

I2(x,−v, t)g(x− tv) + I2(x, v, t)g(x+ tv)− 2I1(x, 0, 0)g(x)

t
dx =∫

Ω

[
D1H(x, Sx, S2x, ..., SN−1x)(v) +D1H(x, Sx, S2x, ..., SN−1x)(−v)

]
g(x) dx ≤ 0, (52)

where the last inequality is due to the concaveness of H with respect to the first variable. We shall now
prove that the limit of the left hand side of (51) is non-negative as t→ 0+. It follows from the convexity of
H with respect to the last N − 1 variable together with ui(x) ∈ ∂i+1H(x, Sx, ..., SN−1x) that
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∫
Ω

I1(x, v, t)g(x) + I1(x,−v, t)g(x)− 2I1(x, 0, 0)g(x)

t
dx ≥

1

t

∫
Ω

N−1∑
i=1

〈ui(x), Si(x+ tv) + Si(x− tv)− 2S(x)〉g(x) dx

The right hand side of the above expression goes to zero, as t → 0, provided either S ∈ W 1,1
loc (Ω) or

ui ∈W 1,1
loc (Ω) for i = 1, 2, ..., N − 1. This together with (51) and (52) imply that∫

Ω

[
D1H(x, Sx, S2x, ..., SN−1x)(v) +D1H(x, Sx, S2x, ..., SN−1x)(−v)

]
g(x) dx = 0,

from which the desired results follows. �

Lemma 7.4 For v ∈ Rd, define Gi(v) =
∫

Ω
DiH(x, Sx, ..., SN−1x)(v) dx. Then

N∑
i=1

[Gi(v) +Gi(−v)] ≤ 0.

Proof. Define fi(t, x, v) = H(σN+1−i(x+ tv, Sx, ..., SN−1x
)
). Note that

t→ fi(t, x, v) + fi(t, x,−v)− 2fi(0, x, v)

t

is monotone and does not change sign. It follows from the monotone convergence theorem that

lim
t→0+

∫
Ω

fi(t, x, v) + fi(t, x,−v)− 2fi(0, x, v)

t
dx =

∫
Ω

lim
t→0+

fi(t, x, v) + fi(t, x,−v)− 2fi(0, x, v)

t
dx

=

∫
Ω

[
DiH(σN+1−i(x, Sx, ..., SN−1x

)
)(v) +DiH(σN+1−i(x, Sx, ..., SN−1x

)
)(v−)

]
dx

=

∫
Ω

[
DiH(x, Sx, ..., SN−1x)(v) +DiH(x, Sx, ..., SN−1x)(−v)

]
dx = Gi(v) +Gi(−v)

Let χΩ(t, x) be a function that is one when both x+ tv, x− tv ∈ Ω and zero otherwise. It follows from the
dominated convergence theorem that

Gi(v) +Gi(−v) =

∫
Ω

lim
t→0+

fi(t, x, v) + fi(t, x,−v)− 2fi(0, x, v)

t
χΩ(t, x) dx

= lim
t→0+

∫
Ω

fi(t, x, v) + fi(t, x,−v)− 2fi(0, x, v)

t
χΩ(t, x) dx.

Let f(t, x, v) =
∑N
i=1 fi(t, x, v). Note that for each x ∈ Ω one has f(t, x, v) =

∑N
i=1 fi(t, x, v) ≤ 0 for t small

enough such that x+ tv ∈ Ω. Similarly f(t, x,−v) ≤ 0 for x− tv ∈ Ω. One also has that
∫

Ω
f(0, x, v) dx = 0.

It follows that

N∑
i=1

[Gi(v) +Gi(−v)] =

∫
Ω

lim
t→0+

f(t, x, v) + f(t, x,−v)− 2f(0, x, v)

t
χΩ(t, x) dx

= lim
t→0+

∫
Ω

f(t, x, v) + f(t, x,−v)− 2f(0, x, v)

t
χΩ(t, x) dx

= lim
t→0+

∫
Ω

f(t, x, v) + f(t, x, v)

t
χΩ(t, x) dx ≤ 0.

Proof of Theorem 7.1. It follows from Lemma 7.3 and 7.4 that for each v ∈ Rd, and i = 1, 2, ..., N∫
Ω

[
DiH(x, Sx, S2x, ..., SN−1x)(v) +DiH(x, Sx, S2x, ..., SN−1x)(−v)

]
dx = 0. (53)
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Since the integrand does not change sign, it has to be zero almost everywhere. Now choose {vk}∞k=1 to be a
countable dense subset of Rd. Set

Ak = {x ∈ Ω;DiH(x, Sx, S2x, ..., SN−1x)(vk) +DiH(x, Sx, S2x, ..., SN−1x)(−vk) = 0, 1 ≤ i ≤ N}

It follows from (53) that Ω \ Ak is a null set. Let Ω0 = ∩kAk. It follows that Ω0 is a full measure subset of
Ω such that ∇iH(x, Sx, S2x, ..., SN−1x) exists for all x ∈ Ω0. �
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