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Abstract

Selfdual variational principles are introduced in order to construct solutions for Hamiltonian and other
dynamical systems which satisfy a variety of linear and nonlinear boundary conditions including many of
the standard ones. These principles lead to new variational proofs of the existence of parabolic flows with
prescribed initial conditions, as well as periodic, anti-periodic and skew-periodic orbits of Hamiltonian
systems. They are based on the theory of anti-selfdual Lagrangians introduced and developed recently
in [3], [4] and [5].

1 Introduction

The existence of a selfdual variational principle for gradient flows of convex functionals was conjectured
in [1] and established in [7]. Similar selfdual variational principles were later introduced in [8] and [6] for
the resolution of certain gradient and Hamiltonian flows that connect two prescribed Lagrangian sub-
manifolds. In this paper, we introduce new anti-selfdual Lagrangians in order to construct variationally
solutions of evolution equations that satisfy certain nonlinear boundary conditions. These include the
more traditional ones, such as the existence of flows with prescribed initial conditions, as well as periodic,
anti-periodic and skew-periodic orbits. Our first variational principle typically deals with gradient flows
of the form:

−ẋ(t) = ∂ϕ
`

t, x(t)
´

(1)

where ϕ(t, ) is a convex lower semi-continuous function on a Hilbert space H . Our second principle deals
with Hamiltonian systems of the form:

−Jẋ(t) ∈ ∂ϕ(t, x(t)) (2)

where here ϕ(t, ·) is a convex lower semi-continuous functional on H×H , and J is the symplectic operator
defined as J(p, q) = (−q, p). In both cases, the prescribed conditions can be quite general but they include
as particular cases the following more traditional ones:

• an initial value problem: x(0) = x0.

• a periodic orbit: x(0) = x(T ),

• an anti-periodic orbit: x(0) = −x(T ) or

• a skew-periodic orbit (in the case of a Hamiltonian system): x(0) = Jx(T ).

We are looking here for selfdual variational principles, and these depend closely on the scalar product
of the underlying path space. The novelty here is in the introduction of appropriate boundary Lagrangians
G which, together with the main Lagrangian L(t, x, p), yields an anti-selfdual Lagrangian on a path space

∗Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
†Research supported by a postdoctoral fellowship at the University of British Columbia.

1



equipped with an adequately defined scalar product. The following space (scalar product) seems to be
well adapted to our framework.

Let [0, T ] be a fixed real interval, and let L2
H be the classical space of Bochner integrable functions from

[0, T ] to H . We consider the Hilbert space A2
H :=

˘

u : [0, T ] → H ; u̇ ∈ L2
H

¯

consisting of all absolutely
continuous arcs u : [0, T ] → H equipped with the norm

‖u‖A2

H
=



‚

‚

u(0) + u(T )

2

‚

‚

2

H
+

Z T

0

‖u̇‖2
H dt

ff

1

2

We now recall the concept of anti-selfduality introduced in [3].

Definition 1 Given a reflexive Banach space X, we say that a convex lower semi-continuous function
L : X ×X∗ → R ∪ {+∞} is an anti-selfdual Lagrangian if

L∗(p, x) = L(−x,−p) for all (x, p) ∈ X ×X∗,

where here L∗ is the Legendre transform in both variables.
A time dependent anti-selfdual Lagrangian on [0, T ]×X ×X∗ is any function L : [0, T ]×X ×X∗ →

R ∪ {+∞} that is measurable with respect to the σ-field generated by the products of Lebesgue sets in
[0, T ] and Borel sets in X ×X∗ and such that L(t, ·, ·) is an anti-selfdual Lagrangian for every t ∈ [0, T ].

The Hamiltonian HL of L is the function defined on [0, T ] ×H ×H by:

HL(t, x, y) = sup{〈y, p〉 − L(t, x, p); p ∈ H}

Here is our first variational principle

Theorem 1.1 Consider a time dependent anti-selfdual Lagrangian L(t, x, p) on [0, T ]×H×H where H
is a Hilbert space, and let G be an anti-selfdual Lagrangian on H × H. Consider on A2

H the following
functional

I(x) =

Z T

0

L
`

t, x(t), ẋ(t)
´

dt+G
`

x(0) − x(T ),
x(0) + x(T )

2

´

.

Assume the following conditions hold:

(A1) −∞ <
R T

0
L(t, x(t), 0) dt ≤ C

`

1 + ‖x‖2
L2

H

´

, x ∈ L2
H .

(A2)
R T

0
HL(t, 0, x(t)) dt→ +∞ as ‖x‖L2

H
→ +∞.

(A3) G is bounded from below and 0 ∈ Dom1(G).

Then, there exists x̂ ∈ A2
H such that

I(x̂) = inf
x∈A2

H

I(x) = 0 (3)

`

− ˙̂x(t),−x̂(t)
´

∈ ∂L
`

t, x̂(t), ˙̂x(t)
´

for all t ∈ [0, T ] (4)

`

−
x̂(0) + x̂(T )

2
, x̂(T ) − x̂(0)

´

∈ ∂G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

. (5)

The most basic time-dependent anti-selfdual Lagrangians are of the form L(t, x, p) = ϕ(t, x) +
ϕ∗(t,−p) where for each t, the function x → ϕ(t, x) is convex and lower semi-continuous on X. Let
now ψ : H → R ∪ {+∞} be another convex lower semi-continuous function. The above principle then

yields that if −C ≤
R T

0
ϕ
`

t, x(t)
´

dt ≤ C
`

‖x‖2
LH

2

+ 1
´

and Φ(t, x) := ϕ(t, x) + w
2
|x|2H + 〈f(t), x〉, then the

infimum of the functional

I(x) =

Z T

0

Φ(t, x(t)) + Φ∗(t,−ẋ(t)) dt+ ψ(x(0) − x(T )) + ψ∗(−
x(0) + x(T )

2
)

on A2
H is zero and is attained at a solution x(t) of the following equation

−ẋ(t) = ∂ϕ
`

t, x(t)
´

+ wx(t) + f(t) for all t ∈ [0, T ]

−
x(0) + x(T )

2
∈ ∂ψ(x(0) − x(T )).

As to the various boundary conditions, we have to choose ψ accordingly.

• Initial boundary condition x(0) = x0 for a given x0 ∈ H , then ψ(x) = 1
4
‖x‖2

H − 〈x, x0〉.
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• Periodic solutions x(0) = x(T ), then ψ is chosen as:

ψ(x) =



0 x = 0
+∞ elsewhere.

• Anti periodic solutions x(0) = −x(T ), then ψ(x) = 0 for each x ∈ H.

It is worth noting that while the main Lagrangian L is expected to be smooth and hence its subdifferential
coincides with its gradient –and the differential inclusion is often an equation, it is crucial that the
boundary Lagrangian G be allowed to be degenerate so as its subdifferential can cover the boundary
conditions discussed above.

For the case of Hamiltonian systems we consider for simplicity H = R
N and let X = H ×H . We shall

establish the following principle.

Theorem 1.2 Let ϕ : [0, T ] ×X → R be such that (t, u) → ϕ(t, u) is measurable in t for each u ∈ X,
and convex and lower semi-continuous in u for a.e. t ∈ [0, T ]. Let ψ : X → R∪{∞} be convex and lower
semi continuous on X and assume the following conditions:

(B1) There exists β ∈ (0, π
2T

) and γ, α ∈ L2(0, T ; R+) such that −α(t) ≤ ϕ(t, u) ≤ β

2
|u|2 + γ(t) for

every u ∈ H and all t ∈ [0, T ].

(B2)
R T

0
ϕ(t, u) dt→ +∞ as |u| → +∞.

(B3) ψ is bounded from below and 0 ∈ Dom(ψ).

(1) The infimum of the functional

J1(u) =

Z T

0

[ϕ(t, u(t)) + ϕ∗(t,−Ju̇(t)) + 〈Ju̇(t), u(t)〉]dt

+〈u(T ) − u(0), J
u(0) + u(T )

2
〉 + ψ

`

u(T ) − u(0)
´

+ ψ∗
`

− J
u(0) + u(T )

2

´

on A2
X is then equal to zero and is attained at a solution of



−Ju̇(t) = ∂ϕ
`

t, u(t)
´

,

−J u(T )+u(0)
2

∈ ∂ψ
`

u(T ) − u(0)
´

.
(6)

(2) The infimum of the functional

J2(u) =

Z T

0

ˆ

ϕ
`

t, u(t)
´

+ ϕ∗(t,−Ju̇(t)) + 〈Ju̇(t), u(t)〉
˜

dt+
`

Ju(0), u(T )
´

+ ψ
`

u(0)
´

+ ψ∗`Ju(T )
´

on A2
X is also zero and is attained at a solution of



−Ju̇(t) = ∂ϕ
`

t, u(t)
´

,
Ju(T ) ∈ ∂ψ

`

u(0)
´

.
(7)

In the applications, ψ is to be chosen according to the required boundary conditions. For example:

• Initial boundary condition x(0) = x0 for a given x0 ∈ H . Use the functional J1 with ϕ̄(t, x) =
ϕ(t, x− x0) and ψ(x) = 0 at 0 and +∞ elsewhere.

• Periodic solutions x(0) = x(T ), or more generally x(0) − x(T ) ∈ K where K is a closed convex
subset of H ×H . Use the functional J1 with ψ chosen as:

ψ(x) =



0 x ∈ K
+∞ elsewhere.

• Anti-periodic solutions x(0) = −x(T ). Use the functional J1 with ψ(x) = 0 for each x ∈ H.

• Skew-periodic solutions x(0) = Jx(T ). Use the functional J2 with ψ(x) = 1
2
|x|2.

Section 2 deals with gradient flows and the proof of Theorem 1.1, while section 3 is concerned with Hamil-
tonian systems. This paper is self-contained but should be read in conjunction with [3], [4] and [7] which
introduce selfduality and [6] which deals with Hamiltonian systems that link Lagrangian submanifolds.
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2 Gradient flows with general boundary conditions

2.1 Anti-selfdual Lagrangians on path space

We now show how a boundary anti-self dual Lagrangian allows us to “lift” a time-dependent anti-selfdual
Lagrangian to the path space A2

H . Note that we can and will identify the space A2
H with the product

space H × L2
H , in such a way that its dual (A2

H)∗ can also be identified with H × L2
H via the formula

〈u, (p1, p0)〉A2

H
,H×L2

H
= 〈

u(0) + u(T )

2
, p1〉 +

Z T

0

〈u̇(t), p0(t)〉 dt

where u ∈ A2
H and (p1, p0(t)) ∈ H × L2

H .

Proposition 2.1 Suppose L is an anti-self dual Lagrangian on [0, T ] × H × H and that G is an anti-
selfdual Lagrangian on H ×H, then the Lagrangian defined on A2

H × (A2
H)

∗
= A2

H × (H × L2
H) by

M(u, p) =

Z T

0

L
`

t, u(t) + p0(t), u̇(t)
´

dt+G
`

u(0) − u(T ) + p1,
u(0) + u(T )

2

´

is anti-self dual Lagrangian on A2
H × (L2

H ×H).

Proof: For (q, v) ∈ A2
H × (A2

H)∗ with q represented by (q0(t), q1) we have

M∗(q, v) = sup
p1∈H

sup
p0∈L2

H

sup
u∈A2

H

(

〈p1,
v(0) + v(T )

2
〉 + 〈q1,

u(0) + u(T )

2
〉

+

Z T

0

ˆ

〈p0(t), v̇(t)〉 + 〈q0(t), u̇〉 − L
`

t, u(t) + p0(t), u̇(t)
´˜

dt

−G
`

u(0) − u(T ) + p1,
u(0) + u(T )

2

´

)

,

making a substitution u(0) − u(T ) + p1 = a ∈ H and u(t) + p0(t) = y(t) ∈ L2
H we obtain

M∗(q, v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

(

〈a+ u(T ) − u(0),
v(0) + v(T )

2
〉 + 〈q1,

u(0) + u(T )

2
〉

+

Z T

0

ˆ

〈y(t) − u(t), v̇〉 + 〈q0(t), u̇(t)〉 − L
`

t, y(t), u̇(t)
´˜

dt

−G
`

a,
u(0) + u(T )

2

´

)

.

Since u̇ and v̇ ∈ L2
H , we have:

R T

0
〈u, v̇〉 = −

R T

0
〈u̇, v〉 + 〈u(T ), v(T )〉 − 〈v(0), u(0)〉 which implies

M∗(q, v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

(

〈a,
v(0) + v(T )

2
〉 + 〈u(T ),

v(0) + v(T )

2
− v(T )〉

+〈u(0), v(0) −
v(0) + v(T )

2
〉 + 〈q1,

u(0) + u(T )

2
〉

+

Z T

0

ˆ

〈y(t), v̇〉 + 〈u̇(t), v(t) + q0(t)〉 − L
`

t, y(t), u̇(t)
´˜

dt

−G
`

a,
u(0) + u(T )

2

´

)

.

Hence,

M∗(q, v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

(

〈a,
v(0) + v(T )

2
〉 + 〈q1 + v(0) − v(T ),

u(0) + u(T )

2
〉 −G

`

a,
u(0) + u(T )

2

´

+

Z T

0

ˆ

〈y(t), v̇(t)〉 + 〈u̇(t), v(t) + q0(t)〉 − L
`

t, y(t), u̇(t)
´˜

dt

)

.
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Identify now A2
H with H × L2

H via the correspondence:

`

b, f(t)
´

∈ H × L2
H 7−→ b+

1

2

„Z T

t

f(s) ds−

Z t

0

f(s) ds

«

∈ A2
H ,

u ∈ A2
H 7−→

`u(0) + u(T )

2
,−u̇(t)

´

∈ H × L2
H .

We finally obtain

M∗(q, v) = sup
a∈H

sup
b∈H



〈a,
v(0) + v(T )

2
〉 + 〈q1 + v(0) − v(T ), b〉 −G(a, b)

ff

+ sup
y∈L2

H

sup
r∈L2

H


Z T

0

ˆ

〈y(t), v̇(t)〉 + 〈v(t) + q0(t), r(t)〉 − L
`

t, y(t), r(t)
´˜

dt

ff

= G∗`v(0) + v(T )

2
, q1 + v(0) − v(T )

´

+

Z T

0

L∗`t, v̇(t), v(t) + q0(t)
´

dt

= G
`

− q1 − v(0) + v(T ),
−v(0) − v(T )

2

´

+

Z T

0

L
`

t,−v(t) − q0(t),−v̇(t)
´

dt

= M(−v,−q).

2.2 Variational principles for gradient flows with general boundary

conditions

We now recall from [3] the following general result about minimizing anti-selfdual Lagrangians.

Proposition 2.2 Let M be a an anti-selfdual Lagrangian on a reflexive Banach space X×X∗ such that
for some x0 ∈ X, the function p → M(x0, p) is bounded above on a neighborhood of the origin in X∗.
Then there exists x̄ ∈ X, such that:

(

M(x̄, 0) = inf
x∈X

M(x, 0) = 0.

(0,−x̄) ∈ ∂M(x̄, 0).
(8)

We can already deduce the following version of Theorem 1.1 modulo a stronger hypothesis on the
boundary Lagrangian.

Proposition 2.3 Consider a time dependent anti-selfdual Lagrangian L(t, x, p) on [0, T ] ×H ×H and
an anti-selfdual lagrangian G on H ×H. Assume the following conditions:

(A1) −∞ <
R T

0
L(t, x(t), 0) dt ≤ C

`

1 + ‖x‖2
L2

H

´

for all x ∈ L2
H .

(A2) G is bounded from below and G(a, 0) ≤ C
`

‖a‖2
H + 1

´

for all a ∈ H.

Then the functional I(x) =
R T

0
L
`

t, x(t), ẋ(t)
´

dt + G
`

x(0) − x(T ), x(0)+x(T )
2

´

attains its minimum at a
path x̂ ∈ A2

H satisfying

I(x̂) = inf
x∈A2

H

I(x) = 0 (9)

`

− ˙̂x(t),−x̂(t)
´

∈ ∂L
`

t, x̂(t), ˙̂x(t)
´

∀t ∈ [0, T ] (10)

`

−
x̂(0) + x̂(T )

2
, x̂(T ) − x̂(0)

´

∈ ∂G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

. (11)

Proof: Apply Proposition 2.2 to the Lagrangian

M(u, p) =

Z T

0

L
`

t, u(t) + p0(t), u̇(t)
´

dt+G
`

u(0) − u(T ) + p1,
u(0) + u(T )

2

´

which is anti-selfdual on A2
H in view of Proposition 2.1. Noting that I(x) = M(x, 0), we obtain x̂(t) ∈ A2

H

such that
Z T

0

L
`

t, x̂(t), ˙̂x(t)
´

dt+G

„

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

«

= 0,
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which gives

0 =

Z T

0

h

L
`

t, x̂(t), ˙̂x(t)
´

+ 〈x̂(t), ˙̂x(t)〉
i

dt−

Z T

0

〈x̂(t), ˙̂x(t)〉 dt+G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

=

Z T

0

h

L
`

t, x̂(t), ˙̂x(t)
´

+ 〈x̂(t), ˙̂x(t)〉
i

dt−
1

2
|x̂(T )|2 +

1

2
|x̂(0)|2 +G

`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

=

Z T

0

L
`

t, x̂(t), ˙̂x(t)
´

+ 〈x̂(t), ˙̂x(t)〉 dt+ 〈x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2
〉 +G

`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

.

Since L(t, ·, ·) and G are anti-selfdual Lagrangians we have L
`

t, x̂(t), ˙̂x(t)
´

+ 〈x̂(t), ˙̂x(t)〉 ≥ 0 and

G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

+ 〈x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2
〉 ≥ 0.

which means that L
`

t, x̂(t), ˙̂x(t)
´

+ 〈x̂(t), ˙̂x(t)〉
´

= 0 for almost all t ∈ [0, T ], and

G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

+ 〈x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2
〉 = 0.

The result follows from the above identities and the limiting case in Fenchel-Legendre duality.�

In order to complete the proof of Theorem 1.1, we need to perform an inf-convolution argument on
the boundary Lagrangian G. We shall use the following simple estimate

Lemma 2.1 Let F : Y 7→ R∪{∞} be a proper convex and lower semi continues functional on a Banach
space Y such that −β ≤ F (y) ≤ α

p
‖y‖p

Y + γ with α > 0, p > 1, β ≥ 0, and γ ≥ 0. Then for every
y∗ ∈ ∂F (y) we have

‖y∗‖Y ∗ ≤
n

pα
q
p (‖y‖Y + β + γ) + 1

op−1

.

We shall also make frequent use of the following lemma [3].

Lemma 2.2 Let G be an anti-selfdual Lagrangian on X × X∗ and consider for each λ > 0, its λ-
regularization

Gλ(x, p) := inf



G(z, p) +
‖x− z‖2

2λ
+
λ

2
‖p‖2; z ∈ X

ff

.

Then,

1. Gλ is also an anti-selfdual Lagrangian on X ×X∗ and Gλ(x, 0) ≤ G(0, 0) + ‖x‖2

2λ
.

2. If (0, 0) ∈ Dom(G) and if xλ ⇀ x in X and pλ ⇀ p weakly in X∗ and if G(xλ, pλ) is bounded from
above, then G(x, p) ≤ lim inf

λ→0
Gλ(xλ, pλ).

Proof of Theorem 1.1: Define for each λ > 0, the Lagrangian Gλ as in Lemma 2.2, and apply
Proposition 2.3 to obtain xλ ∈ A2

H such that

Z T

0

L
`

t, xλ(t), ẋλ(t)
´

dt + Gλ

`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

= 0 (12)

`

− ẋλ(t),−xλ(t)
´

∈ ∂L
`

t, xλ(t), ẋλ(t)
´

(13)

`

−
xλ(0) + xλ(T )

2
, xλ(T ) − xλ(0)

´

∈ ∂Gλ

`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

. (14)

We shall show that (xλ)λ is bounded in A2
H .

For simplicity, we shall assume that L has the form L(t, x, p) = ϕ(t, x) + ϕ∗(t,−p). For such La-
grangians, Equation (13) yields that −ẋλ(t) = ∂1L

`

t, xλ(t), 0
´

. Multiply this equation by xλ(t) and
integrate over [0, T ] × Ω to get

Z T

0

〈−ẋλ(t), xλ(t)〉 dt =

Z T

0

〈∂1L(t, xλ(t), 0), xλ(t)〉 dt,
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which gives

−
1

2
|xλ(T )|2 +

1

2
|xλ(0)|2 =

Z T

0

〈∂1L(t, xλ(t), 0), xλ(t)〉 dt ≥

Z T

0

HL

`

t, 0, xλ(t)
´

dt. (15)

Also, from (14) we have

Gλ

`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

= −〈xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2
〉 =

1

2
|xλ(T )|2 −

1

2
|xλ(0)|2. (16)

Combining (15) and (16) gives that

Gλ

`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

+

Z T

0

HL

`

t, 0, xλ(t)
´

dt ≤ 0. (17)

Since G is bounded from below so is Gλ which together with condition (A2) imply that
R T

0
|xλ(t)|2 dt is

bounded.
Now from condition (A1) and the boundedness of xλ in L2

H , we can apply Lemma 2.1 to get that
−ẋλ(t) = ∂1L

`

t, xλ(t), 0
´

is bounded in L2
H . Hence, xλ is bounded in A2

H , thus, up to a subsequence
xλ(t) ⇀ x̂(t) in A2

H , xλ(0) ⇀ x̂(0) and xλ(T ) ⇀ x̂(T ) in H .

From (17), we have Gλ

`

xλ(0) − xλ(T ), xλ(0)+xλ(T )
2

´

≤ C, and we obtain from Lemma 2.2 that

G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

≤ lim inf
λ→0

Gλ

`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

. (18)

Now, if we let λ→ 0 in (12), then by considering (18) we get
Z T

0

L
`

t, x̂(t), ˙̂x(t)
´

dt+G
`

x̂(0) − x̂(T ),
x̂(0) + x̂(T )

2

´

≤ 0. (19)

On the other hand, for every x ∈ A2
H we have

Z T

0

L
`

t, x(t), ẋ(t)
´

dt+G
`

x(0) − x(T ),
x(0) + x(T )

2

´

≥ 0 (20)

which means I(x̂) = 0 and as in the proof of Proposition 2.3, x(t) satisfies (3), (4), and (5). �

The boundedness condition on L may be too restrictive in applications, and one may want to replace
the Hilbertian norm with a stronger Banach norm for which condition (A1) is more likely to hold. For
this situation, we have the following result.

Theorem 2.3 Let X ⊂ H ⊂ X∗ be an evolution pair and let ψ : [0, T ] × X → R ∪ {+∞} be convex
and lower semi-continuous in x ∈ X for a.e. t ∈ [0, T ] and measurable in t for every x ∈ X. Consider
the time-dependent anti-selfdual Lagrangian, L(t, x, p) = ψ(t, x) + ψ∗(t,−p) on [0, T ] ×X ×X∗ and an
anti-selfdual Lagrangian G on H ×H. Assume the following conditions:

(A′
1) For some p ≥ 2 and C > 0, we have −C

`

1 + ‖x‖p

L
p
X

´

<
R T

0
L(t, x(t), 0) dt ≤ C

`

1 + ‖x‖p

L
p
X

´

for

every x ∈ Lp
X .

(A′
2) G is bounded from below, 0 ∈ Dom(G) and for every a ∈ H, G(a, b) → +∞ as ‖b‖H → +∞.

Then there exists x̂ ∈ Lp
X with ˙̂x ∈ Lq

X∗ ( 1
p

+ 1
q

= 1), x̂(0), x̂(T ) ∈ H and satisfying (3), (4), and (5).

Proof: Here again we shall combine inf-convolution with Theorem 1.1. For λ > 0 consider the
λ−regularization of ψ,

ψλ(t, x) = inf
y∈H



ψ(t, y) +
|x− y|2H

2λ

ff

, (21)

where

ψ(t, y) =



ψ(t, y) y ∈ X
+∞ y ∈ H −X.

Set Lλ(t, x, p) = ψλ(t, x) + ψ∗
λ(t,−p). By Theorem 1.1, there exists xλ(t) ∈ A2

H such that
Z T

0

L
`

t, xλ(t), ẋλ(t)
´

dt + G
`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

= 0 (22)

`

− ẋλ,−xλ(t)
´

∈ ∂L
`

t, xλ(t), ẋλ(t)
´

(23)

`

−
xλ(0) + xλ(T )

2
, xλ(T ) − xλ(0)

´

∈ ∂G
`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

(24)

7



We now show that (xλ)λ is bounded in an appropriate function space. As in the proof of Theorem 1.1,
we have

G
`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

+

Z T

0

HLλ

`

t, 0, xλ(t)
´

dt ≤ 0. (25)

Since ψ is convex and lower semi-continuous, there exists iλ(xλ) such that the infimum in (21) attains
at iλ(xλ), i.e.

ψλ(t, xλ) = ψ(t, iλ(xλ)) +
‖xλ − iλ(xλ)‖2

2λ
. (26)

Therefore,
Z T

0

HLλ

`

t, 0, xλ(t)
´

dt =

Z T

0

HL

`

t, 0, iλ(xλ(t))
´

dt+
‖xλ − iλ(xλ)‖2

2λ
dt. (27)

Plug (27) in inequality (25) to get

G
`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

+

Z T

0

HL

`

t, 0, iλ(xλ(t))
´

dt+
‖xλ − iλ(xλ)‖2

2λ
dt ≤ 0. (28)

By the coercivity assumptions in (A′
1) , we obtain that (iλ(xλ))λ is bounded in Lp(0, T ;X) and (xλ)λ is

bounded in L2(0, T ;H). It follows from (23) and the structure of L that −ẋλ = ∂1L(t, iλ(xλ), 0), which
together with the boundedness of (iλ(xλ))λ in Lp(0, T ;X), condition (A′

1), and Lemma 2.1 imply that

−(ẋλ)λ is bounded in Lq(0, T ;X∗). Also note that xλ(0) − xλ(T ) =
R T

0
ẋλ(t) dt is therefore bounded in

X∗. It follows from (A′
2) that xλ(0) + xλ(T ) is therefore bounded in H and so is in X∗. Hence, up to a

subsequence, we have

iλ(xλ) ⇀ x̂ in Lp(0, T ;X), (29)

ẋλ ⇀ ˙̂x in Lq(0, T ;X∗), (30)

xλ ⇀ x̂ in L2(0, T ;H), (31)

xλ(0) ⇀ x̂(0) in X∗, (32)

xλ(T ) ⇀ x̂(T ) in X∗. (33)

On the other hand it follows from (22) and (26) that

G
`

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

´

+

Z T

0

L
`

t, iλ(xλ(t)), ẋλ

´

+
‖xλ − iλ(xλ)‖2

2λ
+
λ

2
‖ẋλ‖

2
H dt = 0. (34)

By letting λ go to zero in (34), we get from (29)-(33) that

G
`

x̂λ(0) − x̂λ(T ),
x̂λ(0) + x̂λ(T )

2

´

+

Z T

0

L
`

t, x̂λ(t)), ˙̂xλ

´2

H
dt ≤ 0.

It follows from (A′
1) and the last inequality that x̂ ∈ Lp(0, T ;X) and ˙̂x ∈ Lq(0, T ;X∗). The rest of the

proof is similar to the proof of Proposition 2.3.

Remark 2.4 One can actually do without the coercivity condition on G in Theorem 2.3. Indeed, by
using the λ−regularization Gλ of G, we get the required coercivity condition on the second variable for
Gλ and we obtain from Theorem 2.3 that there exists xλ ∈ Lp(0, T ;X) with ẋλ ∈ Lq(0, T ;X∗) such that

Z T

0

L
`

t, xλ(t), ẋλ(t)
´

dt+Gλ

„

xλ(0) − xλ(T ),
xλ(0) + xλ(T )

2

«

= 0. (35)

It follows from (A1) and the boundedness of Gλ from below that (xλ)λ is bounded in Lp(0, T ;X), and
since (ẋλ)λ is bounded in Lq(0, T ;X∗) this also means (xλ(0))λ and (xλ(T ))λ are bounded in H . Hence,
up to a subsequence we have

xλ ⇀ x̂ in Lp(0, T ;X), (36)

ẋλ ⇀ ˙̂x in Lq(0, T ;X∗), (37)

xλ(0) ⇀ x̂(0) in H, (38)

xλ(T ) ⇀ x̂(T ) in H. (39)

The rest of the proof is similar to the proof of Theorem 1.1. �
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2.3 Example

As mentioned in the introduction, a typical example is


−ẋ(t) = ∂ϕ
`

t, x(t)
´

+ wx(t) + f(t)
x(0) = x0 or x(0) = x(T ) or x(0) = −x(T ),

(40)

where −C ≤
R T

0
ϕ
`

t, x(t)
´

dt ≤ C
`

‖x‖2
LH

2

+ 1
´

and w > 0.

For the initial-value problem x(0) = x0, we pick the boundary Lagrangian to be G(x, p)) = 1
4
|x|2H −

〈x, x0〉 + |x0 − p|2, and so the associated functional becomes

I(x) =

Z T

0

Φ(t, x(t)) + Φ∗(t,−ẋ(t)) dt+
1

4
|x(0) − x(T )|2 − 〈x(0) − x(T ), x0〉 + |x0 +

x(0) + x(T )

2
|2

where Φ(t, x) := ϕ(t, x)+ w
2
|x|2H + 〈f(t), x〉, The infimum of I on A2

H is zero and is attained at a solution
x(t) of the equation. The boundary condition is then

−
1

2
(x(0) + x(T )) = ∂1G

`

x(0) − x(T ),−
x(0) + x(T )

2

´

=
1

2

`

x(0) − x(T )
´

− x0,

which gives that x(0) = x0.
We can of course relax the conditions on ϕ by using again inf-convolution as was done in [7] in the

case where ϕ is autonomous, or as in Theorem 2.3.

3 Hamiltonian systems with general boundary conditions

For a given Hilbert space H , we consider the subspace H1
T of A2

H consisting of all periodic functions,
equipped with the norm induced by A2

H . We also consider the space H1
−T consisting of all functions in

A2
H which are anti-periodic, i.e. u(0) = −u(T ). The norm of H1

−T is given by ‖u‖H1

−T
= (
R T

0
|u̇|2 dt)

1

2 .

We now establish a few useful inequalities on H1
−T , which can be seen as the counterparts of Wirtinger’s

inequality,
Z T

0

|u|2 dt ≤
T 2

4π2

Z T

0

|u̇|2 dt for u ∈ H1
T and

Z T

0

u(t) dt = 0,

and the Sobolev inequality on H1
T ,

‖u‖2
∞ ≤

T

12

Z T

0

|u̇|2 dt for u ∈ H1
T and

Z T

0

u(t) dt = 0.

Proposition 3.1 If u ∈ H1
−T then

Z T

0

|u|2 dt ≤
T 2

π2

Z T

0

|u̇|2 dt, (41)

and

‖u‖2
∞ ≤

T

4

Z T

0

|u̇|2 dt. (42)

Proof: Since u(0) = −u(T ), u has the Fourier expansion of the form u(t) =
P∞

k=−∞ uk exp((2k −
1)iπt/T ). The Parseval equality implies that

Z T

0

|u̇|2 dt =

∞
X

k=−∞

T
`

(2k − 1)2π2/T 2
´

|uk|
2 ≥

π2

T 2

∞
X

k=−∞

T |uk|
2 =

π2

T 2

Z T

0

|u|2 dt.

The Cauchy-Schwarz inequality and the above imply that for t ∈ [0, T ],

|u(t)|2 ≤

 

∞
X

k=−∞

|uk|

!2

≤

"

∞
X

k=−∞

T

π2(2k − 1)2

#"

∞
X

k=−∞

T
`

(2k − 1)2π2/T 2
´

|uk|
2

#

=
T

π2

∞
X

k=−∞

1

(2k − 1)2
)

Z T

0

|u̇|2 dt.
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and conclude by noting that
P∞

k=−∞
1

(2k−1)2
= π2

4
.

Proposition 3.2 Consider the space A2
X where X = H ×H and let J be the symplectic operator on X

defined as J(p, q) = (−q, p).

1. If H is any Hilbert space, then for every u ∈ A2
X

˛

˛

˛

˛

Z T

0

(Ju̇, u) dt+

„

J
u(0) + u(T )

2
, u(T ) − u(0)

«˛

˛

˛

˛

≤
T

2

Z T

0

˛

˛u̇(t)
˛

˛

2
dt.

2. If H is finite dimensional, then

˛

˛

˛

˛

Z T

0

(Ju̇, u) dt+

„

J
u(0) + u(T )

2
, u(T ) − u(0)

«˛

˛

˛

˛

≤
T

π

Z T

0

˛

˛u̇(t)
˛

˛

2
dt.

Proof: For part (i), note that each u ∈ A2
X can be written as follows,

u(t) =
1

2

„Z t

0

u̇(s) ds−

Z T

t

u̇(s) ds

«

+
u(0) + u(T )

2
.

where v(t) = u(t) − u(0)+u(T )
2

= 1
2

“

R t

0
u̇(s) ds−

R T

t
u̇(s) ds

”

clearly belongs to H1
−T . Multiplying both

sides by Ju̇ and integrating over [0, T ], we get

Z T

0

〈Ju̇, u〉 dt =
1

2

Z T

0

fiZ t

0

u̇(s) ds−

Z T

t

u̇(s) ds, Ju̇

fl

dt+
˙u(0) + u(T )

2
,

Z T

0

Ju̇(t) dt
¸

Hence
Z T

0

〈Ju̇, u〉 dt−
˙u(0) + u(T )

2
, J
`

u(T ) − u(0)
´¸

=
1

2

Z T

0

fiZ t

0

u̇(s) ds−

Z T

t

u̇(s) ds, Ju̇

fl

dt

and since J is skew-symmetric, we have

Z T

0

〈Ju̇, u〉 dt+
˙

J
u(0) + u(T )

2
, u(T ) − u(0)

¸

=
1

2

Z T

0

fi
Z t

0

u̇(s) ds−

Z T

t

u̇(s) ds, Ju̇

fl

dt (43)

Applying Hölder’s inequality for the right hand side, we get

˛

˛

˛

˛

Z T

0

〈Ju̇, u〉 dt+
˙

J
u(0) + u(T )

2
, u(T ) − u(0)

¸

˛

˛

˛

˛

≤
T

2

Z T

0

˛

˛u̇(t)
˛

˛

2
dt.

For part (ii), set v(t) = u(t) − u(0)+u(T )
2

and note that

Z T

0

〈Ju̇, u〉 dt+
˙

J
u(0) + u(T )

2
, u(T ) − u(0)

¸

=

Z T

0

(Jv̇, v) dt (44)

Since v ∈ H1
−T , Hölder’s inequality and Proposition 3.1 imply,

˛

˛

˛

˛

Z T

0

(Jv̇, v) dt

˛

˛

˛

˛

≤

„Z T

0

|v|2 dt

«

1

2
„Z T

0

|Jv̇|2 dt

«

1

2

≤
T

π

„Z T

0

|v̇|2 dt

«

1

2
„Z T

0

|Jv̇|2 dt

«

1

2

=
T

π

Z T

0

|v̇|2 dt =
T

π

Z T

0

|u̇|2 dt.

Combining this inequality with (44) yields the claimed inequality.

Proposition 3.3 If H = R
N and X = H ×H, then the functional F : A2

X → R defined by

F (u) =

Z T

0

〈Ju̇, u〉 dt+ 〈u(T ) − u(0), J
u(T ) + u(0)

2
〉

is weakly continuous.
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Proof: Let uk be a sequence in A2
X which converges weakly to u in A2

X . The injection A2
X into

C([0, T ];X) with natural norm ‖ ‖∞ is compact, hence uk → u strongly in C([0, T ];X) and specifically
uk(T ) → u(T ) and uk(0) → u(0) strongly in X. Therefore

lim
k→+∞

„

uk(T ) − uk(0), J
uk(T ) + uk(0)

2

«

=

„

u(T ) − u(0), J
u(T ) + u(0)

2

«

(45)

Also, it is standard that u →
R T

0
(Ju̇, u) dt is weakly continuous (Proposition 1.2 in [9] ) which together

with (45) imply that F is weakly continuous.

3.1 A general variational principle for Hamiltonian systems

In this section we establish Theorem 1.2 under the assumption that H is finite dimensional (X = R
2N ).

We start with the following proposition which assumes a stronger condition on the boundary Lagrangian.

Proposition 3.4 Let ϕ : [0, T ] ×X → R, such that (t, u) → ϕ(t, u) is measurable in t for each u ∈ X,
and is convex and lower semi-continuous in u for a.e. t ∈ [0, T ]. Let ψ : X → R ∪ {∞} be convex and
lower semi continuous and assume the following conditions:

(B1) There exists β ∈ (0, π
2T

) and γ, α ∈ L2(0, T ; R+) such that −α(t) ≤ ϕ(t, u) ≤ β

2
|u|2 + γ(t) for

every u ∈ X and a.e. t ∈ [0, T ].

(B′
2) There exist positive constants α1, β1, γ1 ∈ R such that, for every u ∈ X one has −α1 ≤ ψ(u) ≤

β1

2
|u|2 + γ1.

(1) The infimum of the functional

J1(u) =

Z T

0

[ϕ(t, u(t)) + ϕ∗(t,−Ju̇(t)) + 〈Ju̇(t), u(t)〉]dt

+〈u(T ) − u(0), J
u(0) + u(T )

2
〉 + ψ

`

u(T ) − u(0)
´

+ ψ∗
`

− J
u(0) + u(T )

2

´

on A2
X is then equal to zero and is attained at a solution of



−Ju̇(t) = ∂ϕ
`

t, u(t)
´

−J u(T )+u(0)
2

= ∂ψ
`

u(T ) − u(0)
´

.
(46)

(2) The infimum of the functional

J2(u) =

Z T

0

ˆ

ϕ
`

t, u(t)
´

+ ϕ∗(t,−Ju̇(t)) + 〈Ju̇(t), u(t)〉
˜

dt+
`

Ju(0), u(T )
´

+ ψ
`

u(0)
´

+ ψ∗`Ju(T )
´

on A2
X is also equal to zero and is attained at a solution of



−Ju̇(t) = ∂ϕ
`

t, u(t)
´

Ju(T ) = ∂ψ
`

u(0)
´

.
(47)

The proof requires a few preliminary lemmas, but first and anticipating that the conjugate ϕ∗ and ψ∗

may not be finite everywhere, we start by replacing ϕ and ψ with the perturbations such as ϕε(t, u) =
ε
2
‖u‖2 + ϕ(t, u) and ψε(u) = ε

2
‖u‖2 + ψ(u). It is then clear that

1

2(β + ε)
|u|2 − γ(t) ≤ ϕ∗

ε (t, u) ≤
1

2ε
|u|2 + α(t), (48)

and

1

2(β1 + ε)
|u|2 − γ1 ≤ ψ∗

ε (u) ≤
1

2ε
|u|2 + α1. (49)

We now consider the Lagrangian Lε : A2
X × A2

X → R defined by

Lε(v;u) =

Z T

0

[−〈Jv̇(t), u(t)〉 + ϕ∗
ε (t,−Ju̇(t)) − ϕ∗

ε (t,−Jv̇(t)) + 〈Ju̇(t), u(t)〉] dt

+

fi

u(T ) − u(0), J
u(T ) + u(0)

2

fl

−

fi

u(T ) − u(0), J
v(T ) + v(0)

2

fl

+ψ∗
ε

`

− J
u(T ) + u(0)

2

´

− ψ∗
ε

`

− J
v(T ) + v(0)

2

´
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and

Jε
1(u) : =

Z T

0

ˆ

ϕε(t, u(t)) + ϕ∗
ε (t,−Ju̇(t)) +

`

Ju̇(t), u(t)
´˜

dt

+
˙

u(T ) − u(0), J
u(0) + u(T )

2

¸

+ ψε

`

u(T ) − u(0)
´

+ ψ∗
ε

`

− J
u(0) + u(T )

2

´

To simplify the notation we use C as a general positive constant.

Lemma 3.1 For every u ∈ A2
X , we have J1(u) ≥ 0 and Jε

1(u) ≥ 0.

Proof: By the definition of Legendre-Fenchel duality, one has

ϕ(t, u(t)) + ϕ∗(t,−Ju̇(t)) + 〈Ju̇(t), u(t)〉 ≥ 0 for t ∈ [0, T ],

and

ψ
`

u(T ) − u(0)
´

+ ψ∗
`

− J
u(0) + u(T )

2

´

+ 〈u(T ) − u(0), J
u(0) + u(T )

2
〉 ≥ 0,

which means J1(u) ≥ 0. The same applies to Jε
1 .

Lemma 3.2 For every u ∈ A2
X , we have Iε(u) = sup

v∈A2

X

Lε(v, u).

Proof: First recall that one can identify A2
X with X × L2

X via the correspondence:

`

x, f(t)
´

∈ X × L2
X 7−→ x+

1

2

„
Z t

0

f(s) ds−

Z T

t

f(s) ds

«

∈ A2
X

u ∈ A2
X 7−→

„

u(0) + u(T )

2
, u̇(t)

«

∈ X × L2
X

Thus, for every u ∈ A2
X , we can write

sup
v∈A2

X

Lε(v;u) = sup
v∈X×L2

X

Lε(v, u)

= sup
f∈L2(0,T ;X)

sup
x∈X

n

Z T

0

ˆ

〈−Jf(t), u(t)〉 + ϕ∗
ε (t,−Ju̇(t)) − ϕ∗

ε (t,−Jf(t)) + (Ju̇(t), u(t))
˜

dt
o

+
˙

u(T ) − u(0), J
u(T ) + u(0)

2

¸

−
˙

u(T ) − u(0), Jx
¸

+ ψ∗
ε

`

− J
u(T ) + u(0)

2

´

− ψ∗
ε (−Jx)

= sup
f∈L2(0,T ;X)

n

Z T

0

ˆ

〈−Jf(t), u(t)〉 + ϕ∗
ε (t,−Ju̇(t)) − ϕ∗

ε (t,−Jf(t)) + (Ju̇(t), u(t))
˜

dt
o

+ sup
x∈X

n

˙

u(T ) − u(0), J
u(T ) + u(0)

2

¸

−
˙

u(T ) − u(0), Jx
¸

+ψ∗
ε

`

− J
u(T ) + u(0)

2

´

− ψ∗
ε (−Jx)

o

=

Z T

0

[ϕε(t, u(t)) + ϕ∗
ε (t,−Ju̇(t)) + (Ju̇(t), u(t))] dt

+
˙

u(T ) − u(0), J
u(T ) + u(0)

2

¸

+ ψε

`

u(T ) − u(0)
´

+ ψ∗
ε

`

− J
u(T ) + u(0)

2

´

= Jε
1(u).

Lemma 3.3 Under the assumptions (B1) and (B′
2), we have for each 0 < ε < 1

2
( π

T
− 2β) the following

coercivity condition
Lε(0, u) → +∞ when ‖u‖A2

X
→ +∞. (50)

12



Proof: From (48) and (49) and since
R T

0
ϕ∗(t, 0) dt and ψ∗(0) are finite, we get

Lε(0, u) ≥
1

2(β + ε)

Z T

0

|u̇(t)|2 dt+

Z T

0

〈Ju̇(t), u(t)〉 dt+ 〈J
u(0) + u(T )

2
, u(T ) − u(0)〉

+
1

2(β1 + ε)

˛

˛

˛

˛

u(0) + u(T )

2

˛

˛

˛

˛

2

+ C,

where C is a constant. From part (ii) of Proposition 3.2, we have

˛

˛

˛

˛

Z T

0

〈Ju̇(t), u(t)〉 dt+ 〈u(T ) − u(0), J
u(T ) + u(0)

2
〉

˛

˛

˛

˛

≤
T

π

Z T

0

|u̇(t)|2 dt

Hence, modulo a constant, we obtain

Lε(0, u) ≥

„

1

2(β + ε)
−
T

π

«
Z T

0

|u̇(t)|2 dt+
1

2(β1 + ε)

˛

˛

˛

˛

u(0) + u(T )

2

˛

˛

˛

˛

2

.

Since 0 < ε < 1
2
( π

T
− 2β), it follows that 1

2(β+ε)
− T

π
> 0 and Lε(0, u) → +∞ as ‖u‖A2

X
→ +∞. �

Proposition 3.4 is now a consequence of the following Ky-Fan type min-max theorem which is essentially
due to Brezis-Nirenberg-Stampachia (see [2]).

Lemma 3.4 Let Y be a a reflexive Banach space and let L(x, y) be a real valued function on Y ×Y that
satisfies the following conditions:

(1) L(x, x) ≤ 0 for every x ∈ Y .

(2) For each x ∈ Y , the function y → L(x, y) is concave.

(3) For each y ∈ Y , the function x→ L(x, y) is weakly lower semi-continuous.

(4) The set Y0 = {x ∈ Y ;L(x, 0) ≤ 0} is bounded in Y .

Then there exists x0 ∈ Y such that sup
y∈Y

L(x0, y) ≤ 0.

Proof of Proposition 3.4: Let 0 < δ < 1
2
( π

T
− 2β) and 0 < ε < δ. It is easy to see that the

Lε : X × X → R satisfies all the hypothesis of Lemma 3.4. It follows from (48) and (49) that Lε is
finitely valued on X × X and that for each u ∈ X × X, Lε(u, u) = 0. Lemma 3.3 gives that the set
Y = {u ∈ X,Lε(0, u) ≤ 0} is bounded in X. Moreover, for every u ∈ X, the function v → Lε(v, u) is
concave and for every v ∈ X, u→ Lε(u, v) is weakly lower semi-continuous by Proposition 3.3. It follows
that there exists uε ∈ X such that Iε(uε) ≤ sup

v∈A2

X

Lε(v, uε) ≤ 0.

In view of Lemma 3.1, we then have Iε(uε) = 0 which yields:

Iε(uε) =

Z T

0

[ϕε(t, uε(t)) + ϕ∗
ε (t,−Ju̇ε(t)) + 〈uε(t), Ju̇ε(t)〉] dt

+ψε

`

uε(T ) − uε(0)
´

+ ψ∗
ε

`

− J
uε(0) + uε(T )

2

´

+〈uε(T ) − uε(0), J
uε(0) + uε(T )

2
〉

= 0. (51)

We shall show that uε is bounded in X. From Proposition 3.2, we have

˛

˛

˛

˛

Z T

0

(Ju̇ε(t), uε(t)) dt+ 〈uε(T ) − uε(0), J
uε(T ) + uε(0)

2
〉

˛

˛

˛

˛

≤
T

π

Z T

0

|u̇ε(t)|
2 dt

which together with (51), yield

Z T

0

[ϕε(t, uε(t)) + ϕ∗
ε (t,−Ju̇ε(t))] dt−

T

π

Z T

0

|u̇ε(t)|
2 dt+ ψε

`

uε(T ) − uε(0)
´

+ ψ∗
ε

`

− J
uε(0) + uε(T )

2

´

≤ 0.

This inequality together with the facts that ϕε and ψε are bounded from below and ϕ∗
ε and ψ∗

ε satisfy
inequalities (48) and (49) respectively, guarantee the existence of a constant C > 0 independent of ε such
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that

„

1

2(β + δ)
−
T

π

«Z T

0

|u̇ε(t)|
2 dt+

1

2(β1 + δ)

˛

˛

˛

˛

uε(0) + uε(T )

2

˛

˛

˛

˛

2

≤

„

1

2(β + ε)
−
T

π

«Z T

0

|u̇ε(t)|
2 dt+

1

2(β1 + ε)

˛

˛

˛

˛

uε(0) + uε(T )

2

˛

˛

˛

˛

2

≤ C,

which means (uε)ε is bounded in A2
X and so, up to a subsequence , there exists a ū ∈ A2

X such that
uε ⇀ ū in A2

X . It is easily seen that

Z T

0

ϕ∗
ε (t, u̇ε(t)) dt := inf

v∈L2(0,T ;X)

Z T

0

»

ϕ∗(t, v(t)) +
|u̇ε(t) − v(t)|2

2ε

–

dt

and since ϕ∗ is convex and lower semi continuous, there exists vε ∈ L2(0, T ;X) such that this infimum
attains at vε, i.e.

Z T

0

ϕ∗
ε (t, u̇ε(t)) dt =

Z T

0

»

ϕ∗(t, vε(t)) +
|u̇ε(t) − vε(t)|

2

2ε

–

dt.

It follows from the above and the boundedness of (uε)ε in A2
X , that there exists C > 0 independent of ε

such that
Z T

0

ϕ∗
ε (t, u̇ε(t)) dt =

Z T

0

»

ϕ∗(t, vε(t)) +
|u̇ε(t) − vε(t)|

2

2ε

–

dt < C.

Since ϕ∗ is bounded from below, we have
R T

0
|u̇ε(t)− vε(t)|

2dt < Cε which means vε ⇀ ˙̄u in L2(0, T ;X).
Hence

Z T

0

ϕ∗(t, ˙̄u(t)) dt ≤ lim inf
ε→0

Z T

0

ϕ∗(t, vε(t))dt

≤ lim inf
ε→0

Z T

0

»

ϕ∗(t, vε(t)) +
|u̇ε(t) − vε(t)|

2

2ε

–

dt

= lim inf
ε→0

Z T

0

ϕ∗
ε (t, u̇ε(t))dt. (52)

Also,

Z T

0

ϕ(t, ū(t)) dt ≤ lim inf
ε→0

Z T

0

ϕ(t, uε(t)) dt

≤ lim inf
ε→0

Z T

0

h

ϕ(t, uε(t)) +
ε

2
|uε(t)|

2
i

dt

= lim inf
ε→0

Z T

0

ϕε(t, uε(t))dt. (53)

It follows from (52) and (53) that,

Z T

0

ˆ

ϕ(t, ū(t)) + ϕ∗(t,−J ˙̄u(t))
˜

dt ≤ lim inf
ε→0

Z T

0

[ϕε(t, uε(t)) + ϕ∗
ε (t,−Ju̇ε(t))] dt. (54)

By the same argument we arrive at,

ψ
`

ū(T ) − ū(0)
´

+ ψ∗
`

− J
ū(0) + ū(T )

2

´

≤ lim inf
ε→0

n

ψε

`

uε(T ) − uε(0)
´

+ ψ∗
ε

`

− J
uε(0) + uε(T )

2

´

o

Also, from Proposition 3.3, we have

lim
ε→0

Z T

0

〈uε(t), Ju̇ε(t)〉 dt + 〈uε(T ) − uε(0), J
uε(0) + uε(T )

2
〉

=

Z T

0

〈ū(t), J ˙̄u(t)〉dt+ 〈ū(T ) − ū(0), J
ū(0) + ū(T )

2
〉. (55)
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Combining the above yields

I(ū) =

Z T

0

ˆ

ϕ(t, ū(t)) + ϕ∗(t,−J ˙̄u(t)) + (ū(t), J ˙̄u(t))
˜

dt

+ ψ
`

ū(T ) − ū(0)
´

+ ψ∗
`

− J
ū(0) + ū(T )

2

´

+ 〈ū(T ) − ū(0), J
ū(0) + ū(T )

2
〉

≤ lim inf
ε→0

n

Z T

0

[ϕε(t, uε(t)) + ϕ∗
ε (t,−Ju̇ε(t)) + (uε(t), Ju̇ε(t))] dt

+ ψε

`

uε(T ) − uε(0)
´

+ ψ∗
ε

`

− J
uε(0) + uε(T )

2

´

+ 〈uε(T ) − uε(0), J
uε(0) + uε(T )

2
〉
o

= lim inf
ε→0

Iε(uε) = 0.

On the other hand Lemma 3.1 implies that I(ū) ≥ 0, which means the latter is zero, i.e.

I(ū) =

Z T

0

ˆ

ϕ(t, ū) + ϕ∗(t,−J ˙̄u) + (ū, J ˙̄u)
˜

dt

+ ψ
`

ū(T ) − ū(0)
´

+ ψ∗`− J
ū(0) + ū(T )

2

´

+ 〈ū(T ) − ū(0), J
ū(0) + ū(T )

2
〉 = 0.

The result now follows from the following identities and from the limiting case in Legendre-Fenchel
duality.

ϕ(t, ū(t)) + ϕ∗(t,−J ˙̄u(t)) + (ū(t), J ˙̄u(t)) = 0

ψ
`

ū(T ) − ū(0)
´

+ ψ∗
`

− J
ū(0) + ū(T )

2

´

+ 〈ū(T ) − ū(0), J
ū(0) + ū(T )

2
〉 = 0.

�

We shall now use Proposition 3.4 to prove Theorem 1.2. For that we shall λ−regularize the convex
functional ψ, then use assumption B2 of Theorem 1.2 to derive uniform bounds and ensure convergence

in A2
X when λ approaches to 0. First recall that if ψλ(x) = inf

y∈X

n

ψ(y) +
‖x−y‖2

X

2λ

o

then its conjugate ψ∗
λ is

equal to ψ∗(x)+ λ|x|2

2
, which means that ifG(x, p) is the anti-selfdual Lagrangian G(x, p) = ψ(x)+ψ∗(−p),

then its λ-regularization is nothing but Gλ(x, p) = ψλ(x) + ψ∗
λ(−p).

Proof of Theorem 1.2, Part (1): The functional ψλ satisfies the condition (B′
2) of Proposition

3.4, hence for each λ > 0 there exists a uλ ∈ A2
X , such that

Iλ(uλ) :=

Z T

0

[ϕ(t, uλ(t)) + ϕ∗(t,−Ju̇λ(t)) + 〈Ju̇λ(t), uλ(t)〉] dt

+〈uλ(T ) − uλ(0), J
uλ(T ) + uλ(0)

2
〉 + ψλ

`

uλ(T ) − uλ(0)
´

+ ψ∗
λ

`

− J
uλ(T ) + uλ(0)

2

´

= 0. (56)

We shall show uλ is bounded in A2
X . From Proposition 3.2 we obtain

˛

˛

˛

˛

Z T

0

〈Ju̇λ, uλ〉 dt+ 〈uλ(T ) − uλ(0), J
uλ(T ) + uλ(0)

2
〉

˛

˛

˛

˛

≤
T

π

Z T

0

|u̇λ(t)|2 dt

which together with (48) and (56) imply

ψλ

`

uλ(T ) − uλ(0)
´

+ ψ∗
λ

`

− J
uλ(T ) + uλ(0)

2

´

+

Z T

0

ϕ(t, uλ(t)) dt+

„

1

2β
−
T

π

«
Z T

0

|u̇λ(t)|2 dt ≤ 0. (57)

Since ψ is bounded from below so is ψλ. Also, 0 ∈ Dom(ψ) which means ψ∗ and consequently ψ∗
λ is

bounded from below. Therefore it follows from (57) that:

ψλ

`

uλ(T ) − uλ(0)
´

+ ψ∗
λ

`

− J
uλ(T ) + uλ(0)

2

´

≤ C, (58)
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and
Z T

0

ϕ(t, uλ) dt+

„

1

2α
−
T

2

«
Z T

0

|u̇λ(t)|2 ≤ C, (59)

where C > 0 is a positive constant. It follows from the assumption (B1), (B2) and (59) that |uλ(t)| and
R T

0
|u̇λ|

2 dt are bounded. Consequently uλ is bounded in A2
X and so, up to a subsequence, uλ ⇀ ū in

A2
X .

It follows from (58) and Lemma 2.2 that

ψ
`

ū(T ) − ū(0)
´

+ ψ∗
`

− J
ū(T ) + ū(0)

2

´

≤ lim inf
λ

ψλ

`

uλ(T ) − uλ(0)
´

+ ψ∗
λ

`

− J
uλ(T ) + ūλ(0)

2

´

. (60)

Also, from Proposition 3.3, we have

inf
λ→0

Z T

0

〈uλ(t), Ju̇λ(t)〉 dt + 〈uλ(T ) − uλ(0), J
uλ(0) + uλ(T )

2
〉

=

Z T

0

〈ū(t), J ˙̄u(t)〉 dt+ 〈ū(T ) − ū(0), J
ū(0) + ū(T )

2
〉. (61)

Now, taking into account (60) and (61), by letting λ→ 0 in (56) we obtain,

I(ū) =

Z T

0

ˆ

ϕ(t, ū(t)) + ϕ∗
`

t,−J ˙̄u(t)
´

+ 〈J ˙̄u(t), ū(t)〉
˜

dt

+〈ū(T ) − ū(0), J
ū(T ) + ū(0)

2
〉 + ψ

`

ū(T ) − ū(0)
´

+ ψ∗
`

− J
ū(T ) + ū(0)

2

´

≤ lim inf
λ→0

n

Z T

0

[ϕ(t, uλ(t)) + ϕ∗(t,−Ju̇λ(t)) + 〈Ju̇λ(t), uλ(t)〉] dt

+〈uλ(T ) − uλ(0), J
uλ(T ) + uλ(0)

2
〉 + ψλ

`

uλ(T ) − uλ(0)
´

+ ψ∗
λ

`

− J
uλ(T ) + uλ(0)

2

´

o

= lim inf
λ→0

Iλ(uλ) = 0.

From Lemma 3.1, I(ū) ≥ 0, which means the latter is zero. The result follows from the following identities
and from the limiting case in Legendre-Fenchel duality

ϕ(t, ū) + ϕ∗(t,−J ˙̄u) + 〈ū, J ˙̄u〉 = 0.

ψ
`

ū(T ) − ū(0)
´

+ ψ∗
`

− J
ū(0) + ū(T )

2

´

+ 〈ū(T ) − ū(0), J
ū(0) + ū(T )

2
〉 = 0.

Proof of Part (2): Note first that 〈J u(0)+u(T )
2

, u(T ) − u(0)〉 = 〈Ju(0), u(T )〉. The corresponding
Lagrangian Lε : X ×X → R is defined as follows

Lε(v, u) =

Z T

0

[(−Jv̇(t), u(t)) + ϕ∗
ε (t,−Ju̇(t)) − ϕ∗

ε (t,−Jv̇(t)) + 〈Ju̇(t), u(t)〉] dt

+〈Ju(0), u(T )〉 − 〈Ju(0), v(T )〉 + ψ∗
ε

`

Ju(T )
´

− ψ∗
ε

`

Jv(T )
´

,

The rest of the proof is quite similar to Part (1) and is left to the interested reader.

3.2 Applications

As mentioned in the introduction, one can choose the boundary Lagrangian ψ appropriately to solve
Hamiltonian systems of the form



−Ju̇(t) ∈ ∂ϕ(t, u(t))
u(0) = u0, or u(T ) − u(0) ∈ K, or u(T ) = −u(0) or u(T ) = Ju(0).

One can also use the method to solve second order systems with convex potential and with prescribed
nonlinear boundary conditions such as:

8

<

:

−q̈(t) = ∂ϕ
`

t, q(t)
´

− q(0)+q(T )
2

= ∂ψ1

`

q̇(T ) − q̇(0)
´

,
q̇(0)+q̇(T )

2
= ∂ψ2

`

q(T ) − q(0)
´

(62)
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and
8

<

:

q̈(t) = ∂ϕ
`

t, q(t)
´

−q(T ) = ∂ψ1

`

q̇(0)
´

,
q̇(T ) = ∂ψ2

`

q(0)
´

(63)

where ψ1 and ψ2 are convex and lower semi continuous. One can deduce the following

Corollary 3.5 Let ϕ : [0, T ] × H → R be such that (t, q) → ϕ(t, q) is measurable in t for each q ∈ H,
convex and lower semi-continuous in q for a.e. t ∈ [0, T ], and let ψi : H → R ∪ {∞}, i = 1, 2 be convex
and lower semi continuous on H. Assume that the following conditions:

A1: There exists β ∈ (0, π
2T

) and γ, α ∈ L2(0, T ; R+) such that −α(t) ≤ ϕ(t, q) ≤ β2

2
|q|2 + γ(t) for every

q ∈ H and a.e. t ∈ [0, T ].

A2:
R T

0
ϕ(t, q) dt→ +∞ as |q| → +∞.

A3: ψ1 and ψ2 are bounded from below and 0 ∈ Dom(ψi) for i = 1, 2.

Then equations (62) and (63) have at least one solution in A2
H .

Proof: Define Ψ : H × H → R ∪ {∞} by Ψ(p, q) := ψ1(p) + ψ2(q) and Φ : [0, T ] × H × H → R by
Φ(t, u) := β

2
|p|2+ 1

β
ϕ
`

t, q(t)
´

where u = (p, q). It is easily seen that Φ is convex and lower semi continuous
in u and that

−α(t) ≤ Φ(t, u) ≤ β

2
|u|2 + γ(t)

β
and

R T

0
Φ(t, u) dt→ +∞ as |u| → +∞.

Also, from A3, the function Ψ is bounded from below and 0 ∈ Dom(Ψ). By Theorem 1.2, the infimum of
the functional

I(u) : =

Z T

0

[Φ(t, u(t)) + Φ∗(t,−Ju̇(t)) + 〈Ju̇(t), u(t)〉] dt

+〈u(T ) − u(0), J
u(0) + u(T )

2
〉 + Ψ

`

u(T ) − u(0)
´

+ Ψ∗
`

− J
u(0) + u(T )

2

´

,

on A2
X is zero and is attained at a solution of



−Ju̇(t) ∈ ∂Φ(t, u(t)),

−J u(T )+u(0)
2

= ∂Ψ(u(T ) − u(0)).

Now if we rewrite this problem for u = (p, q), we get

−ṗ(t) =
1

β
∂ϕ
`

t, q(t)
´

,

q̇(t) = βp(t),

−
q(T ) + q(0)

2
= ∂ψ

`

p(T ) − p(0)
´

,

p(T ) + p(0)

2
= ∂ψ

`

q(T ) − q(0)
´

,

and hence q ∈ A2
H is a solution of (61).

As in the case of Hamiltonian systems, one can then solve variationally the differential equation
−q̈(t) = ∂ϕ

`

t, q(t)
´

with any one of the following boundary conditions:

(i) Periodic: q̇(T ) = q̇(0) and q(T ) = q(0).

(ii) Antiperiodic: q̇(T ) = −q̇(0) and q(T ) = −q(0).

(iii) Initial value condition: q(0) = q0 and q̇(0) = q1 for given q0, q1 ∈ H.
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