Langlands Program: Number Theory and Representation Theory
Videos from CMO Workshop
Gonzalo Tornaría, Universidad de la República
Monday Nov 28, 2022 09:15 - 10:19
The basis problem for paramodular forms
Shaun Stevens, University of East Anglia
Monday Nov 28, 2022 10:30 - 11:33
Types and local Langlands correspondence I
Clifton Cunningham, University of Calgary
Monday Nov 28, 2022 16:30 - 17:30
Vogan's conjecture on Arthur packets for p-adic groups
Shaun Stevens, University of East Anglia
Tuesday Nov 29, 2022 09:15 - 10:20
Types and local Langlands correspondence II
Thomas Haines, University of Maryland
Tuesday Nov 29, 2022 15:00 - 16:04
On the Hasse-Weil zeta functions for Kottwitz simple Shimura varieties
Ramla Abdellatif, UPJV-Amiens
Tuesday Nov 29, 2022 16:30 - 17:30
Studying p-modular representations of p-adic groups in the setting of Langlands programme
Shaun Stevens, University of East Anglia
Wednesday Nov 30, 2022 08:30 - 09:30
Types and local Langlands correspondence III
Guy Henniart, Université Paris-Saclay, Orsay, France
Wednesday Nov 30, 2022 09:30 - 10:26
Simple cuspidals and the Langlands correspondence
Cong Xue, CNRS
Wednesday Nov 30, 2022 11:00 - 12:02
Cohomology of stacks of shtukas II
Vincent Lafforgue, CNRS Institut de Mathématiques de Jussieu - Paris Rive Gauche
Thursday Dec 1, 2022 09:15 - 10:19
Spectral decomposition
Daniel Barrera, Universidad de Santiago de Chile
Thursday Dec 1, 2022 10:30 - 11:27
Periods integrals and Eigenvarieties
Cong Xue, CNRS
Thursday Dec 1, 2022 12:00 - 13:03
Cohomology of stacks of shtukas III
Solomon Friedberg, Boston College
Thursday Dec 1, 2022 15:00 - 16:00
Towards a New Shimura Correspondence
Michael Harris, Columbia University
Thursday Dec 1, 2022 16:30 - 17:32
Around local and global Langlands correspondences for function fields
Corinne Blondel, CNRS
Friday Dec 2, 2022 09:15 - 10:31
L-packets via types and covers
Adrian Zenteno Gutiérrez, Centro de Investigación en Matemáticas
Friday Dec 2, 2022 12:00 - 12:51
Using Langlands program to solve certain cases of the inverse Galois problem